Global Intermittency and Collapsing Turbulence in the Stratified Planetary Boundary Layer

Direct numerical simulation of the turbulent Ekman layer over a smooth wall is used to investigate bulk properties of a planetary boundary layer under stable stratification. Our simplified configuration depends on two non-dimensional parameters: a Richardson number characterizing the stratification and a Reynolds number characterizing the turbulence scale separation. This simplified configuration is sufficient to reproduce global intermittency, a turbulence collapse, and the decoupling of the surface from the outer region of the boundary layer. Global intermittency appears even in the absence of local perturbations at the surface; the only requirement is that large-scale structures several times wider than the boundary-layer height have enough space to develop. Analysis of the mean velocity, turbulence kinetic energy, and external intermittency is used to investigate the large-scale structures and corresponding differences between stably stratified Ekman flow and channel flow. Both configurations show a similar transition to the turbulence collapse, overshoot of turbulence kinetic energy, and spectral properties. Differences in the outer region resulting from the rotation of the system lead, however, to the generation of enstrophy in the non-turbulent patches of the Ekman flow. The coefficient of the stability correction function from Monin–Obukhov similarity theory is estimated as $$\beta \approx 5.7$$β≈5.7 in agreement with atmospheric observations, theoretical considerations, and results from stably stratified channel flows. Our results demonstrate the applicability of this set-up to atmospheric problems despite the intermediate Reynolds number achieved in our simulations.

[1]  J. Williamson Low-storage Runge-Kutta schemes , 1980 .

[2]  A. Obukhov,et al.  Turbulence in an atmosphere with a non-uniform temperature , 1971 .

[3]  Larry Mahrt,et al.  Stably Stratified Atmospheric Boundary Layers , 2014 .

[4]  L. Mahrt,et al.  Evaluation of Boundary Layer Similarity Theory for Stable Conditions in CASES-99 , 2007 .

[5]  J. H. Ferziger,et al.  A numerical study of the turbulent Ekman layer , 1990, Journal of Fluid Mechanics.

[6]  S. Biringen,et al.  Direct Numerical Simulation of the Turbulent Ekman Layer: Turbulent Energy Budgets , 2010 .

[7]  H. Kawamura,et al.  A study of turbulence structure and large-scale motion in the Ekman layer through direct numerical simulations , 2004 .

[8]  A. S. Monin,et al.  The Atmospheric Boundary Layer , 1970 .

[9]  Turker Ince,et al.  Atmospheric Disturbances that Generate Intermittent Turbulence in Nocturnal Boundary Layers , 2004 .

[10]  A. Moene,et al.  The Cessation of Continuous Turbulence as Precursor of the Very Stable Nocturnal Boundary Layer , 2012 .

[11]  Manuel García-Villalba,et al.  Turbulence modification by stable stratification in channel flow , 2011 .

[12]  Javier Jiménez,et al.  Cascades in Wall-Bounded Turbulence , 2012 .

[13]  S. Derbyshire Boundary-Layer Decoupling over Cold Surfaces as a Physical Boundary-Instability , 1999 .

[14]  J. Ferziger,et al.  Direct simulation of the stably stratified turbulent Ekman layer , 1992, Journal of Fluid Mechanics.

[15]  Chin-Hoh Moeng,et al.  Large-Eddy Simulation Of The Stably Stratified Planetary Boundary Layer , 2000 .

[16]  J. Golaz,et al.  Turbulence and Vertical Fluxes in the Stable Atmospheric Boundary Layer. Part II: A Novel Mixing-Length Model , 2013 .

[17]  C. W. Atta,et al.  Direct numerical simulations of the turbulence evolution in a uniformly sheared and stably stratified flow , 1997, Journal of Fluid Mechanics.

[18]  H. J. J. Jonker,et al.  Local Similarity in the Stable Boundary Layer and Mixing-Length Approaches: Consistency of Concepts , 2008 .

[19]  Thorsten Mauritsen,et al.  Observations of Stably Stratified Shear-Driven Atmospheric Turbulence at Low and High Richardson Numbers , 2007 .

[20]  Direct Numerical Simulation of the Neutrally Stratified Turbulent Ekman Boundary Layer , 2006 .

[21]  A. Holtslag,et al.  An Intercomparison of Large-Eddy Simulations of the Stable Boundary Layer , 2004 .

[22]  S. Pope Turbulent Flows: FUNDAMENTALS , 2000 .

[23]  Lipo Wang,et al.  Gradient trajectory analysis of a scalar field with external intermittency , 2009, Journal of Fluid Mechanics.

[24]  Larry Mahrt,et al.  Stratified Atmospheric Boundary Layers , 1999 .

[25]  O. M. Phillips,et al.  The irrotational motion outside a free turbulent boundary , 1955, Mathematical Proceedings of the Cambridge Philosophical Society.

[26]  S. Lele Compact finite difference schemes with spectral-like resolution , 1992 .

[27]  Jielun Sun,et al.  Turbulence Regimes and Turbulence Intermittency in the Stable Boundary Layer during CASES-99 , 2012 .

[28]  P. Spalart,et al.  Direct numerical simulation of the Ekman layer: A step in Reynolds number, and cautious support for a log law with a shifted origin , 2008 .

[29]  U. Högström Review of some basic characteristics of the atmospheric surface layer , 1996 .

[30]  J. Cuxart,et al.  Large-Eddy Simulations of the Stable Boundary Layer Using the Standard Kolmogorov Theory: Range of Applicability , 2005 .

[31]  P. Spalart,et al.  Retraction: “Direct numerical simulation of the Ekman layer: A step in Reynolds number, and cautious support for a log law with a shifted origin” [Phys. Fluids 20, 101507 (2008)] , 2009 .

[32]  Joel H. Ferziger,et al.  Stably stratified turbulent channel flows. I. Stratification regimes and turbulence suppression mechanism , 2000 .

[33]  D. Fitzjarrald,et al.  In the Core of the Night-Effects of Intermittent Mixing on a Horizontally Heterogeneous Surface , 2003 .

[34]  H. Tennekes,et al.  The Logarithmic Wind Profile , 1973 .

[35]  A. Holtslag,et al.  The Minimum Wind Speed for Sustainable Turbulence in the Nocturnal Boundary Layer , 2012 .

[36]  Philippe R. Spalart,et al.  Theoretical and numerical study of a three-dimensional turbulent boundary layer , 1989, Journal of Fluid Mechanics.

[37]  A. Smits,et al.  Wall-bounded turbulent flows at high Reynolds numbers: Recent advances and key issues , 2010 .

[38]  G. Coleman Similarity Statistics from a Direct Numerical Simulation of the Neutrally Stratified Planetary Boundary Layer. , 1999 .

[39]  O. Acevedo,et al.  The Coupling State of an Idealized Stable Boundary Layer , 2012, Boundary-Layer Meteorology.

[40]  D. Chung,et al.  Direct numerical simulation of stationary homogeneous stratified sheared turbulence , 2011, Journal of Fluid Mechanics.

[41]  Oscar Flores,et al.  Analysis of Turbulence Collapse in the Stably Stratified Surface Layer Using Direct Numerical Simulation , 2011 .

[42]  E. Bou‐Zeid,et al.  Turbulence and Vertical Fluxes in the Stable Atmospheric Boundary Layer. Part I: A Large-Eddy Simulation Study , 2013 .

[43]  Philipp Schlatter,et al.  Turbulent–laminar coexistence in wall flows with Coriolis, buoyancy or Lorentz forces , 2012, Journal of Fluid Mechanics.

[44]  M. Friedman,et al.  Predictability of the Stable Atmospheric Boundary Layer , 1995 .

[45]  David K. Bisset,et al.  The turbulent/non-turbulent interface bounding a far wake , 2002, Journal of Fluid Mechanics.

[46]  B. V. D. Wiel,et al.  Intermittent turbulence and oscillations in the stable boundary layer over land , 2002 .

[47]  H. Kawamura,et al.  Direct Numerical Simulation of Turbulent Heat Transfer in the Stably Stratified Ekman Layer , 2002 .

[48]  Valdis Kibens,et al.  Large-scale motion in the intermittent region of a turbulent boundary layer , 1970, Journal of Fluid Mechanics.

[49]  S. Corrsin,et al.  Free-Stream Boundaries of Turbulent Flows , 1955 .

[50]  Ronald J. Adrian,et al.  Hairpin vortex organization in wall turbulencea) , 2007 .

[51]  J. Barnard,et al.  Direct Numerical Simulations of Intermittent Turbulence in the Very Stable Ekman Layer , 2001 .

[52]  Frans T. M. Nieuwstadt,et al.  Direct Numerical Simulation of Stable Channel Flow at Large Stability , 2005 .

[53]  Klaus Wyser,et al.  ‘Modelling the Arctic Boundary Layer: An Evaluation of Six Arcmip Regional-Scale Models using Data from the Sheba Project’ , 2005 .

[54]  R. Stull An Introduction to Boundary Layer Meteorology , 1988 .

[55]  Direct Numerical Simulation of the Turbulent Ekman Layer: Turbulent Energy Budgets , 2010 .

[56]  Factorization of the Fourier transform of the pressure‐Poisson equation using finite differences in colocated grids , 2012 .

[57]  F. Nieuwstadt The atmospheric boundary layer , 2005 .