Performance Comparison of SVM and ANN for Handwritten Devnagari Character Recognition

Classification methods based on learning from examples have been widely applied to character recognition from the 1990s and have brought forth significant improvements of recognition accuracies. This class of methods includes statistical methods, artificial neural networks, support vector machines (SVM), multiple classifier combination, etc. In this paper, we discuss the characteristics of the some classification methods that have been successfully applied to handwritten Devnagari character recognition and results of SVM and ANNs classification method, applied on Handwritten Devnagari characters. After preprocessing the character image, we extracted shadow features, chain code histogram features, view based features and longest run features. These features are then fed to Neural classifier and in support vector machine for classification. In neural classifier, we explored three ways of combining decisions of four MLP’s, designed for four different features.

[1]  Teuvo Kohonen,et al.  The self-organizing map , 1990, Neurocomputing.

[2]  Jiri Matas,et al.  On Combining Classifiers , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[3]  Ching Y. Suen,et al.  Sorting and Recognizing Cheques and Financial Documents , 1998, Document Analysis Systems.

[4]  Subhadip Basu,et al.  Handwritten Bangla Alphabet Recognition using an MLP Based Classifier , 2012, ArXiv.

[5]  Robert P. W. Duin,et al.  The combining classifier: to train or not to train? , 2002, Object recognition supported by user interaction for service robots.

[6]  J. Friedman Regularized Discriminant Analysis , 1989 .

[7]  Fuad Rahman,et al.  Multiple classifier decision combination strategies for character recognition: A review , 2003, Document Analysis and Recognition.

[8]  Simon Haykin,et al.  GradientBased Learning Applied to Document Recognition , 2001 .

[9]  Patrice Y. Simard,et al.  Best practices for convolutional neural networks applied to visual document analysis , 2003, Seventh International Conference on Document Analysis and Recognition, 2003. Proceedings..

[10]  Cheng-Lin Liu,et al.  Handwritten numeral string recognition: character-level vs string-level classifier training , 2004, ICPR 2004.

[11]  Yoshua Bengio,et al.  Gradient-based learning applied to document recognition , 1998, Proc. IEEE.

[12]  Horst Bunke,et al.  Off-Line, Handwritten Numeral Recognition by Perturbation Method , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[13]  Venu Govindaraju,et al.  Challenges in OCR of Devanagari documents , 2005, Eighth International Conference on Document Analysis and Recognition (ICDAR'05).

[14]  Ulrich Kressel,et al.  PATTERN CLASSIFICATION TECHNIQUES BASED ON FUNCTION APPROXIMATION , 1997 .

[15]  Ching Y. Suen,et al.  Multiple Classifier Combination Methodologies for Different Output Levels , 2000, Multiple Classifier Systems.

[16]  Geoffrey E. Hinton,et al.  Learning representations by back-propagating errors , 1986, Nature.

[17]  Vladimir N. Vapnik,et al.  The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.

[18]  Bidyut Baran Chaudhuri,et al.  A complete printed Bangla OCR system , 1998, Pattern Recognit..

[20]  Ching Y. Suen,et al.  Historical review of OCR research and development , 1992, Proc. IEEE.

[21]  李幼升,et al.  Ph , 1989 .

[22]  Hyun-Chul Kim,et al.  A numeral character recognition using the PCA mixture model , 2002, Pattern Recognit. Lett..

[23]  Bidyut Baran Chaudhuri,et al.  Indian script character recognition: a survey , 2004, Pattern Recognit..

[24]  Geoffrey E. Hinton,et al.  Learning representations of back-propagation errors , 1986 .

[25]  Mahantapas Kundu,et al.  Combining Multiple Feature Extraction Techniques for Handwritten Devnagari Character Recognition , 2008, 2008 IEEE Region 10 and the Third international Conference on Industrial and Information Systems.

[26]  Fumitaka Kimura,et al.  Recognition of Off-Line Handwritten Devnagari Characters Using Quadratic Classifier , 2006, ICVGIP.

[27]  Mahantapas Kundu,et al.  Application of Statistical Features in Handwritten Devnagari Character Recognition , 2010, ArXiv.

[28]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[29]  Donald F. Specht,et al.  Probabilistic neural networks , 1990, Neural Networks.

[30]  Heekuck Oh,et al.  Neural Networks for Pattern Recognition , 1993, Adv. Comput..

[31]  Adam Krzyżak,et al.  Methods of combining multiple classifiers and their applications to handwriting recognition , 1992, IEEE Trans. Syst. Man Cybern..

[32]  Fumitaka Kimura,et al.  Modified Quadratic Discriminant Functions and the Application to Chinese Character Recognition , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[33]  Patrick Gallinari,et al.  An MLP-SVM combination architecture for offline handwritten digit recognition , 2003, Document Analysis and Recognition.

[34]  Masaki Nakagawa,et al.  Evaluation of prototype learning algorithms for nearest-neighbor classifier in application to handwritten character recognition , 2001, Pattern Recognit..

[35]  Santanu Chaudhury,et al.  Devnagari numeral recognition by combining decision of multiple connectionist classifiers , 2002 .

[36]  Pavel Pudil,et al.  Introduction to Statistical Pattern Recognition , 2006 .

[37]  David Chiu,et al.  BOOK REVIEW: "PATTERN CLASSIFICATION", R. O. DUDA, P. E. HART and D. G. STORK, Second Edition , 2001 .

[38]  Geoffrey E. Hinton,et al.  Modeling the manifolds of images of handwritten digits , 1997, IEEE Trans. Neural Networks.

[39]  Hermann Ney,et al.  Combined Classification of Handwritten Digits Using the 'Virtual Test Sample Method' , 2001, Multiple Classifier Systems.

[40]  Keinosuke Fukunaga,et al.  Introduction to statistical pattern recognition (2nd ed.) , 1990 .

[41]  Ching Y. Suen,et al.  A class-modular feedforward neural network for handwriting recognition , 2002, Pattern Recognit..

[42]  Ishwar K. Sethi,et al.  Machine recognition of constrained hand printed devanagari , 1977, Pattern Recognit..

[44]  Horst Bunke,et al.  Handbook of Character Recognition and Document Image Analysis , 1997 .

[45]  Deepak Bagai,et al.  Representation, Extraction of Nodal Features of DevNagri Letters , 2002, ICVGIP.

[46]  David G. Stork,et al.  Pattern Classification , 1973 .

[47]  Veena Bansal Integrating Knowledge Sources in Devanagari Text Recognition , 1999 .

[48]  Veena Bansal,et al.  Integrating knowledge sources in Devanagari text recognition system , 2000, IEEE Trans. Syst. Man Cybern. Part A.

[49]  Shigeo Abe DrEng Pattern Classification , 2001, Springer London.

[50]  Herbert Freeman,et al.  On the Encoding of Arbitrary Geometric Configurations , 1961, IRE Trans. Electron. Comput..

[51]  Ulrich H.-G. Kreßel,et al.  Pairwise classification and support vector machines , 1999 .

[52]  Jürgen Franke ISOLATED HANDPRINTED DIGIT RECOGNITION , 1997 .

[53]  Cheng-Lin Liu,et al.  Handwritten digit recognition: benchmarking of state-of-the-art techniques , 2003, Pattern Recognit..