Holocentric chromosome evolution in kissing bugs (Hemiptera: Reduviidae: Triatominae): diversification of repeated sequences
暂无分享,去创建一个
F. Panzera | P. Lorite | T. Palomeque | S. Pita | J. Vela | P. Mora | Khoa Pham Thi
[1] C. Ben Beard,et al. Chagas disease or American trypanosomiasis. , 1998, Bulletin of the World Health Organization.
[2] Á. Cuadrado,et al. Comparative repeatome analysis on Triatoma infestans Andean and Non-Andean lineages, main vector of Chagas disease , 2017, PloS one.
[3] M. Dalíková,et al. W-enriched satellite sequence in the Indian meal moth, Plodia interpunctella (Lepidoptera, Pyralidae) , 2017, Chromosome Research.
[4] L. Vilas-Boas,et al. A New Approach to Chromosomal Evolution in the Giant Water Bug (Heteroptera: Belostomatidae) , 2016, The Journal of heredity.
[5] C. Galvão,et al. Heterochromatin base pair composition and diversification in holocentric chromosomes of kissing bugs (Hemiptera, Reduviidae) , 2016, Memorias do Instituto Oswaldo Cruz.
[6] F. Panzera,et al. Chromosome Painting in Triatomine Insects Reveals Shared Sequences Between X Chromosomes and Autosomes , 2016, Journal of Medical Entomology.
[7] C. Galvão,et al. New arrangements on several species subcomplexes of Triatoma genus based on the chromosomal position of ribosomal genes (Hemiptera - Triatominae). , 2016, Infection, genetics and evolution : journal of molecular epidemiology and evolutionary genetics in infectious diseases.
[8] Francisco J. Ruiz-Ruano,et al. High-throughput analysis of the satellitome illuminates satellite DNA evolution , 2016, Scientific Reports.
[9] J. Dujardin,et al. Epidemiological status of kissing-bugs in South East Asia: A preliminary assessment. , 2015, Acta tropica.
[10] M. Plohl,et al. Genome-wide analysis of tandem repeats in Tribolium castaneum genome reveals abundant and highly dynamic tandem repeat families with satellite DNA features in euchromatic chromosomal arms , 2015, DNA research : an international journal for rapid publication of reports on genes and genomes.
[11] A. Rojas de Arias,et al. Cryptic speciation in the Triatoma sordida subcomplex (Hemiptera, Reduviidae) revealed by chromosomal markers , 2015, Parasites & Vectors.
[12] M. Plohl,et al. Structural and functional liaisons between transposable elements and satellite DNAs , 2015, Chromosome Research.
[13] X. Maside,et al. Evolutionary history of the Azteca-like mariner transposons and their host ants , 2015, The Science of Nature.
[14] F. Panzera,et al. Distribution and Evolution of Repeated Sequences in Genomes of Triatominae (Hemiptera-Reduviidae) Inferred from Genomic In Situ Hybridization , 2014, PloS one.
[15] E. Brasset,et al. Drosophila heterochromatin: structure and function. , 2014, Current opinion in insect science.
[16] C. Galvão,et al. Chromosomal divergence and evolutionary inferences in Rhodniini based on the chromosomal location of ribosomal genes. , 2013, Memorias do Instituto Oswaldo Cruz.
[17] X. Maside,et al. The ant genomes have been invaded by several types of mariner transposable elements , 2012, Naturwissenschaften.
[18] F. Panzera,et al. High Dynamics of rDNA Cluster Location in Kissing Bug Holocentric Chromosomes (Triatominae, Heteroptera) , 2012, Cytogenetic and Genome Research.
[19] F. Panzera,et al. Cytogenetics and Genome Evolution in the Subfamily Triatominae (Hemiptera, Reduviidae) , 2010, Cytogenetic and Genome Research.
[20] S. Mas‐Coma,et al. Systematics of Mepraia (Hemiptera-Reduviidae): cytogenetic and molecular variation. , 2010, Infection, genetics and evolution : journal of molecular epidemiology and evolutionary genetics in infectious diseases.
[21] R. Hawley,et al. Heterochromatin: A Rapidly Evolving Species Barrier , 2009, PLoS biology.
[22] D. Barbash,et al. Species-Specific Heterochromatin Prevents Mitotic Chromosome Segregation to Cause Hybrid Lethality in Drosophila , 2009, PLoS biology.
[23] S. Kubíčková,et al. Sex Chromosome Evolution in Cotton Stainers of the Genus Dysdercus (Heteroptera: Pyrrhocoridae) , 2009, Cytogenetic and Genome Research.
[24] P. Lorite,et al. Satellite DNA in insects: a review , 2008, Heredity.
[25] J. O'connor,et al. Genome size determination in chagas disease transmitting bugs (hemiptera-triatominae) by flow cytometry. , 2007, The American journal of tropical medicine and hygiene.
[26] P. M. Salazar-schettino,et al. Chromosomal variation and genome size support existence of cryptic species of Triatoma dimidiata with different epidemiological importance as Chagas disease vectors , 2006, Tropical medicine & international health : TM & IH.
[27] Teresa Palomeque,et al. Detection of a mariner-like element and a miniature inverted-repeat transposable element (MITE) associated with the heterochromatin from ants of the genus Messor and their possible involvement for satellite DNA evolution. , 2006, Gene.
[28] P. Lorite,et al. Characterization and evolutionary dynamics of a complex family of satellite DNA in the leaf beetle Chrysolina carnifex (Coleoptera, Chrysomelidae) , 2005, Chromosome Research.
[29] J. Shapiro,et al. Why repetitive DNA is essential to genome function , 2005, Biological reviews of the Cambridge Philosophical Society.
[30] J. Dujardin,et al. Genomic Changes of Chagas Disease Vector, South America , 2004, Emerging infectious diseases.
[31] C. Galvão,et al. The Evolutionary Origin of Diversity in Chagas Disease Vectors. , 2017, Trends in parasitology.
[32] M. Plohl,et al. Satellite DNA evolution. , 2012, Genome dynamics.
[33] N. Ueshima. Cytotaxonomy of the triatominae (Reduviidae: Hemiptera) , 2004, Chromosoma.
[34] A. Solari. Autosomal synaptonemal complexes and sex chromosomes without axes in Triatoma infestans (Reduviidae; Hemiptera) , 2004, Chromosoma.
[35] H. Lent,et al. Revision of the Triatominae (Hemiptera, Reduviidae), and their significance as vectors of Chagas' disease. , 1979 .