Holocentric chromosome evolution in kissing bugs (Hemiptera: Reduviidae: Triatominae): diversification of repeated sequences

[1]  C. Ben Beard,et al.  Chagas disease or American trypanosomiasis. , 1998, Bulletin of the World Health Organization.

[2]  Á. Cuadrado,et al.  Comparative repeatome analysis on Triatoma infestans Andean and Non-Andean lineages, main vector of Chagas disease , 2017, PloS one.

[3]  M. Dalíková,et al.  W-enriched satellite sequence in the Indian meal moth, Plodia interpunctella (Lepidoptera, Pyralidae) , 2017, Chromosome Research.

[4]  L. Vilas-Boas,et al.  A New Approach to Chromosomal Evolution in the Giant Water Bug (Heteroptera: Belostomatidae) , 2016, The Journal of heredity.

[5]  C. Galvão,et al.  Heterochromatin base pair composition and diversification in holocentric chromosomes of kissing bugs (Hemiptera, Reduviidae) , 2016, Memorias do Instituto Oswaldo Cruz.

[6]  F. Panzera,et al.  Chromosome Painting in Triatomine Insects Reveals Shared Sequences Between X Chromosomes and Autosomes , 2016, Journal of Medical Entomology.

[7]  C. Galvão,et al.  New arrangements on several species subcomplexes of Triatoma genus based on the chromosomal position of ribosomal genes (Hemiptera - Triatominae). , 2016, Infection, genetics and evolution : journal of molecular epidemiology and evolutionary genetics in infectious diseases.

[8]  Francisco J. Ruiz-Ruano,et al.  High-throughput analysis of the satellitome illuminates satellite DNA evolution , 2016, Scientific Reports.

[9]  J. Dujardin,et al.  Epidemiological status of kissing-bugs in South East Asia: A preliminary assessment. , 2015, Acta tropica.

[10]  M. Plohl,et al.  Genome-wide analysis of tandem repeats in Tribolium castaneum genome reveals abundant and highly dynamic tandem repeat families with satellite DNA features in euchromatic chromosomal arms , 2015, DNA research : an international journal for rapid publication of reports on genes and genomes.

[11]  A. Rojas de Arias,et al.  Cryptic speciation in the Triatoma sordida subcomplex (Hemiptera, Reduviidae) revealed by chromosomal markers , 2015, Parasites & Vectors.

[12]  M. Plohl,et al.  Structural and functional liaisons between transposable elements and satellite DNAs , 2015, Chromosome Research.

[13]  X. Maside,et al.  Evolutionary history of the Azteca-like mariner transposons and their host ants , 2015, The Science of Nature.

[14]  F. Panzera,et al.  Distribution and Evolution of Repeated Sequences in Genomes of Triatominae (Hemiptera-Reduviidae) Inferred from Genomic In Situ Hybridization , 2014, PloS one.

[15]  E. Brasset,et al.  Drosophila heterochromatin: structure and function. , 2014, Current opinion in insect science.

[16]  C. Galvão,et al.  Chromosomal divergence and evolutionary inferences in Rhodniini based on the chromosomal location of ribosomal genes. , 2013, Memorias do Instituto Oswaldo Cruz.

[17]  X. Maside,et al.  The ant genomes have been invaded by several types of mariner transposable elements , 2012, Naturwissenschaften.

[18]  F. Panzera,et al.  High Dynamics of rDNA Cluster Location in Kissing Bug Holocentric Chromosomes (Triatominae, Heteroptera) , 2012, Cytogenetic and Genome Research.

[19]  F. Panzera,et al.  Cytogenetics and Genome Evolution in the Subfamily Triatominae (Hemiptera, Reduviidae) , 2010, Cytogenetic and Genome Research.

[20]  S. Mas‐Coma,et al.  Systematics of Mepraia (Hemiptera-Reduviidae): cytogenetic and molecular variation. , 2010, Infection, genetics and evolution : journal of molecular epidemiology and evolutionary genetics in infectious diseases.

[21]  R. Hawley,et al.  Heterochromatin: A Rapidly Evolving Species Barrier , 2009, PLoS biology.

[22]  D. Barbash,et al.  Species-Specific Heterochromatin Prevents Mitotic Chromosome Segregation to Cause Hybrid Lethality in Drosophila , 2009, PLoS biology.

[23]  S. Kubíčková,et al.  Sex Chromosome Evolution in Cotton Stainers of the Genus Dysdercus (Heteroptera: Pyrrhocoridae) , 2009, Cytogenetic and Genome Research.

[24]  P. Lorite,et al.  Satellite DNA in insects: a review , 2008, Heredity.

[25]  J. O'connor,et al.  Genome size determination in chagas disease transmitting bugs (hemiptera-triatominae) by flow cytometry. , 2007, The American journal of tropical medicine and hygiene.

[26]  P. M. Salazar-schettino,et al.  Chromosomal variation and genome size support existence of cryptic species of Triatoma dimidiata with different epidemiological importance as Chagas disease vectors , 2006, Tropical medicine & international health : TM & IH.

[27]  Teresa Palomeque,et al.  Detection of a mariner-like element and a miniature inverted-repeat transposable element (MITE) associated with the heterochromatin from ants of the genus Messor and their possible involvement for satellite DNA evolution. , 2006, Gene.

[28]  P. Lorite,et al.  Characterization and evolutionary dynamics of a complex family of satellite DNA in the leaf beetle Chrysolina carnifex (Coleoptera, Chrysomelidae) , 2005, Chromosome Research.

[29]  J. Shapiro,et al.  Why repetitive DNA is essential to genome function , 2005, Biological reviews of the Cambridge Philosophical Society.

[30]  J. Dujardin,et al.  Genomic Changes of Chagas Disease Vector, South America , 2004, Emerging infectious diseases.

[31]  C. Galvão,et al.  The Evolutionary Origin of Diversity in Chagas Disease Vectors. , 2017, Trends in parasitology.

[32]  M. Plohl,et al.  Satellite DNA evolution. , 2012, Genome dynamics.

[33]  N. Ueshima Cytotaxonomy of the triatominae (Reduviidae: Hemiptera) , 2004, Chromosoma.

[34]  A. Solari Autosomal synaptonemal complexes and sex chromosomes without axes in Triatoma infestans (Reduviidae; Hemiptera) , 2004, Chromosoma.

[35]  H. Lent,et al.  Revision of the Triatominae (Hemiptera, Reduviidae), and their significance as vectors of Chagas' disease. , 1979 .