A Generalized Kernel Approach to Dissimilarity-based Classification
暂无分享,去创建一个
[1] A. Householder,et al. Discussion of a set of points in terms of their mutual distances , 1938 .
[2] A. G. Arkad'ev,et al. Computers and pattern recognition , 1967 .
[3] N. JARDINE,et al. A New Approach to Pattern Recognition , 1971, Nature.
[4] David G. Stork,et al. Pattern Classification , 1973 .
[5] A. Tversky. Features of Similarity , 1977 .
[6] J. Gower. Euclidean Distance Geometry , 1982 .
[7] Lev Goldfarb,et al. A unified approach to pattern recognition , 1984, Pattern Recognit..
[8] J. Gower,et al. Metric and Euclidean properties of dissimilarity coefficients , 1986 .
[9] Keinosuke Fukunaga,et al. Introduction to statistical pattern recognition (2nd ed.) , 1990 .
[10] O. Mangasarian,et al. Robust linear programming discrimination of two linearly inseparable sets , 1992 .
[11] Anil K. Jain,et al. A modified Hausdorff distance for object matching , 1994, Proceedings of 12th International Conference on Pattern Recognition.
[12] P. Groenen,et al. Modern multidimensional scaling , 1996 .
[13] Bernhard Schölkopf,et al. Kernel Principal Component Analysis , 1997, ICANN.
[14] Bernhard Schölkopf,et al. Support vector learning , 1997 .
[15] Anil K. Jain,et al. Representation and Recognition of Handwritten Digits Using Deformable Templates , 1997, IEEE Trans. Pattern Anal. Mach. Intell..
[16] R. Duin,et al. COMPLEXITY OF DISSIMILARITY BASED PATTERN CLASSES , 1998 .
[17] Bernhard Schölkopf,et al. Semiparametric Support Vector and Linear Programming Machines , 1998, NIPS.
[18] Paul S. Bradley,et al. Feature Selection via Mathematical Programming , 1997, INFORMS J. Comput..
[19] Klaus Obermayer,et al. Classi cation on Pairwise Proximity , 2007 .
[20] R. C. Williamson,et al. Classification on proximity data with LP-machines , 1999 .
[21] Christopher J. C. Burges,et al. Geometry and invariance in kernel based methods , 1999 .
[22] Robert P. W. Duin,et al. Relational discriminant analysis , 1999, Pattern Recognit. Lett..
[23] G. Wahba. Support vector machines, reproducing kernel Hilbert spaces, and randomized GACV , 1999 .
[24] Daphna Weinshall,et al. Classification with Nonmetric Distances: Image Retrieval and Class Representation , 2000, IEEE Trans. Pattern Anal. Mach. Intell..
[25] Robert P. W. Duin,et al. Classifiers in almost empty spaces , 2000, Proceedings 15th International Conference on Pattern Recognition. ICPR-2000.
[26] Vladimir N. Vapnik,et al. The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.
[27] Bernhard Schölkopf,et al. New Support Vector Algorithms , 2000, Neural Computation.
[28] Bernhard Schölkopf,et al. The Kernel Trick for Distances , 2000, NIPS.
[29] Philip N. Klein,et al. Recognition of Shapes by Editing Shock Graphs , 2001, ICCV.
[30] Shigeo Abe DrEng. Pattern Classification , 2001, Springer London.
[31] R. Duin,et al. Automatic pattern recognition by similarity representations , 2001 .