Local Approximation from Spline Spaces on Box Meshes
暂无分享,去创建一个
[1] Tom Lyche,et al. Polynomial splines over locally refined box-partitions , 2013, Comput. Aided Geom. Des..
[2] Giancarlo Sangalli,et al. Exponential Convergence of the hp Version of Isogeometric Analysis in 1D , 2012 .
[3] Andrea Bressan,et al. A Versatile Strategy for the Implementation of Adaptive Splines , 2016, MMCS.
[4] Giancarlo Sangalli,et al. Mathematical analysis of variational isogeometric methods* , 2014, Acta Numerica.
[5] Hendrik Speleers,et al. THB-splines: The truncated basis for hierarchical splines , 2012, Comput. Aided Geom. Des..
[6] T. Dupont,et al. Polynomial approximation of functions in Sobolev spaces , 1980 .
[7] Giancarlo Sangalli,et al. Characterization of analysis-suitable T-splines , 2015, Comput. Aided Geom. Des..
[8] Ulrich Reif. Polynomial approximation on domains bounded by diffeomorphic images of graphs , 2012, J. Approx. Theory.
[9] Rüdiger Verfürth,et al. A note on polynomial approximation in Sobolev spaces , 1999 .
[10] Giancarlo Sangalli,et al. On Quasi-Interpolation Operators in Spline Spaces , 2015 .
[11] Carlotta Giannelli,et al. Adaptive isogeometric methods with hierarchical splines: error estimator and convergence , 2015, 1502.00565.
[12] Hendrik Speleers,et al. Effortless quasi-interpolation in hierarchical spaces , 2016, Numerische Mathematik.
[13] Daniel Peterseim,et al. Analysis-suitable adaptive T-mesh refinement with linear complexity , 2014, Comput. Aided Geom. Des..
[14] David R. Forsey,et al. Hierarchical B-spline refinement , 1988, SIGGRAPH.
[15] Giancarlo Sangalli,et al. Analysis-Suitable T-splines are Dual-Compatible , 2012 .
[16] Philipp Morgenstern,et al. Globally Structured Three-Dimensional Analysis-Suitable T-Splines: Definition, Linear Independence and m-graded local refinement , 2015, SIAM J. Numer. Anal..
[17] Carl de Boor,et al. A Practical Guide to Splines , 1978, Applied Mathematical Sciences.
[18] L. Schumaker,et al. Local Spline Approximation Methods , 1975 .
[19] Nicholas S. North,et al. T-spline simplification and local refinement , 2004, SIGGRAPH 2004.
[20] Bert Jüttler,et al. A hierarchical construction of LR meshes in 2D , 2015, Comput. Aided Geom. Des..
[21] Dominik Schötzau,et al. Exponential convergence for hp-version and spectral finite element methods for elliptic problems in polyhedra , 2015 .
[22] Karl Scherer,et al. New Upper Bound for the B-Spline Basis Condition Number , 1999 .
[23] Tom Lyche,et al. Foundations of Spline Theory: B-Splines, Spline Approximation, and Hierarchical Refinement , 2018 .
[24] Andrea Bressan,et al. Some properties of LR-splines , 2013, Comput. Aided Geom. Des..
[25] T. Hughes,et al. Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .
[26] Hendrik Speleers,et al. Strongly stable bases for adaptively refined multilevel spline spaces , 2014, Adv. Comput. Math..
[27] R. Range. Holomorphic Functions and Integral Representations in Several Complex Variables , 1998 .
[28] Ahmad H. Nasri,et al. T-splines and T-NURCCs , 2003, ACM Trans. Graph..
[29] Ricardo G. Durán,et al. On Polynomial Approximation in Sobolev Spaces , 1983 .
[30] Giancarlo Sangalli,et al. Anisotropic NURBS approximation in isogeometric analysis , 2012 .
[31] Carlotta Giannelli,et al. Complexity of hierarchical refinement for a class of admissible mesh configurations , 2015, Comput. Aided Geom. Des..
[32] R ForseyDavid,et al. Hierarchical B-spline refinement , 1988 .
[33] Thomas J. R. Hughes,et al. On linear independence of T-spline blending functions , 2012, Comput. Aided Geom. Des..
[34] P. Müller. E. F. Beckenbach and R. Bellman, Inequalities. (Ergebnisse der Mathematik und ihrer Grenzgebiete, Heft 30.) XII + 198 S. m. 6 Abb. Berlin/Göttingen/Heidelberg 1961. Springer‐Verlag. Preis Brosch. DM 48,60 , 1962 .
[35] Ulrich Reif,et al. Approximation with diversified B-splines , 2014, Comput. Aided Geom. Des..
[36] Bert Jüttler,et al. TDHB-splines: The truncated decoupled basis of hierarchical tensor-product splines , 2014, Comput. Aided Geom. Des..
[37] Hendrik Speleers,et al. Hierarchical spline spaces: quasi-interpolants and local approximation estimates , 2017, Adv. Comput. Math..
[38] Giancarlo Sangalli,et al. ANALYSIS-SUITABLE T-SPLINES OF ARBITRARY DEGREE: DEFINITION, LINEAR INDEPENDENCE AND APPROXIMATION PROPERTIES , 2013 .