Entropic uncertainty relations for quantum information scrambling

Different fields of physics characterize differently how much two quantum operations disagree: quantum information theory features uncertainty relations cast in terms of entropies. The higher an uncertainty bound, the less compatible the operations. In condensed matter and high-energy physics, initially localized, far-apart operators come to disagree as entanglement spreads through a quantum many-body system. This spread, called “scrambling,” is quantified with the out-of-time-ordered correlator (OTOC). We unite these two measures of operation disagreement by proving entropic uncertainty relations for scrambling. The uncertainty bound depends on the quasiprobability (the nonclassical generalization of a probability) known to average to the OTOC. The quasiprobability strengthens the uncertainty bound, we find, when a spin chain scrambles in numerical simulations. Hence our entropic uncertainty relations reflect the same incompatibility as scrambling, uniting two fields’ notions of quantum-operation disagreement.Different subfields of physics quantify operator disagreement with different measures. The authors unite two, entropic uncertainty relations from quantum information theory and scrambling from condensed matter and high-energy physics.

[1]  Renato Renner,et al.  Security of quantum key distribution , 2005, Ausgezeichnete Informatikdissertationen.

[2]  Brian Swingle,et al.  Unscrambling the physics of out-of-time-order correlators , 2018, Nature Physics.

[3]  Ritchie,et al.  Realization of a measurement of a "weak value" , 1991, Physical review letters.

[4]  T Picot,et al.  Partial-measurement backaction and nonclassical weak values in a superconducting circuit. , 2013, Physical review letters.

[5]  C. Ramanathan,et al.  Exploring Localization in Nuclear Spin Chains. , 2016, Physical review letters.

[6]  P. Xue,et al.  Experimental test of uncertainty relations for general unitary operators. , 2017, Optics express.

[7]  J. Lundeen,et al.  Direct measurement of the quantum wavefunction , 2011, Nature.

[8]  J. Dressel Weak Values as Interference Phenomena , 2014, 1410.0943.

[9]  Kim F. Lee,et al.  Direct measurement of the Kirkwood-Rihaczek distribution for the spatial properties of a coherent light beam , 2009, 0912.5251.

[10]  Omar Fawzi,et al.  Scrambling speed of random quantum circuits , 2012, 1210.6644.

[11]  Felix Leditzky,et al.  Relative entropies and their use in quantum information theory , 2016, ArXiv.

[12]  C. Mendl,et al.  Scrambling and thermalization in a diffusive quantum many-body system , 2016, 1612.02434.

[13]  Nicole Yunger Halpern,et al.  Strengthening weak measurements of qubit out-of-time-order correlators , 2018, Physical Review A.

[14]  M. L. Wall,et al.  Measuring out-of-time-order correlations and multiple quantum spectra in a trapped-ion quantum magnet , 2016, Nature Physics.

[15]  K R Parthasarathy,et al.  An Entropic Uncertainty Principle for Quantum Measurements , 2001 .

[16]  M. Rangamani,et al.  Classification of out-of-time-order correlators , 2017, SciPost Physics.

[17]  A. Pati,et al.  Products of weak values: Uncertainty relations, complementarity, and incompatibility , 2016, 1603.05776.

[18]  Nicole Yunger Halpern,et al.  Contextuality Provides Quantum Advantage in Postselected Metrology , 2019, 1903.02563.

[19]  H. P. Robertson The Uncertainty Principle , 1929 .

[20]  G S Thekkadath,et al.  Direct Measurement of the Density Matrix of a Quantum System. , 2016, Physical review letters.

[21]  H. Hofmann,et al.  Observation of non-classical correlations in sequential measurements of photon polarization , 2016, 1606.00148.

[22]  Nicole Yunger Halpern,et al.  Quasiprobability behind the out-of-time-ordered correlator , 2017, 1704.01971.

[23]  Daniel A. Roberts,et al.  Lieb-Robinson Bound and the Butterfly Effect in Quantum Field Theories. , 2016, Physical review letters.

[24]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[25]  B. Gadway,et al.  Exploring quantum signatures of chaos on a Floquet synthetic lattice , 2017, Physical Review A.

[26]  Robert W Spekkens,et al.  Negativity and contextuality are equivalent notions of nonclassicality. , 2006, Physical review letters.

[27]  J. Maldacena,et al.  A bound on chaos , 2015, Journal of High Energy Physics.

[28]  Vaidman,et al.  How the result of a measurement of a component of the spin of a spin-1/2 particle can turn out to be 100. , 1988, Physical review letters.

[29]  A. Jordan,et al.  Significance of the imaginary part of the weak value , 2011, 1112.3986.

[30]  J. Lundeen,et al.  Observing Dirac's classical phase space analog to the quantum state. , 2013, Physical review letters.

[31]  Eliahu Cohen,et al.  Introduction to Weak Measurements and Weak Values , 2013 .

[32]  Marco Tomamichel,et al.  Quantum Information Processing with Finite Resources - Mathematical Foundations , 2015, ArXiv.

[33]  A Tosi,et al.  Measuring Incompatible Observables by Exploiting Sequential Weak Values. , 2016, Physical review letters.

[34]  E. H. Kennard Zur Quantenmechanik einfacher Bewegungstypen , 1927 .

[35]  W. Heisenberg Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik , 1927 .

[36]  Masahito Ueda,et al.  Out-of-time-order fluctuation-dissipation theorem. , 2016, Physical review. E.

[37]  S. Wehner,et al.  Entropic uncertainty and measurement reversibility , 2015, 1511.00267.

[38]  Raj B Patel,et al.  Strong Unitary and Overlap Uncertainty Relations: Theory and Experiment. , 2017, Physical review letters.

[39]  Ye,et al.  Gapless spin-fluid ground state in a random quantum Heisenberg magnet. , 1992, Physical review letters.

[40]  B. Zeng,et al.  Measuring out-of-time-order correlators on a nuclear magnetic resonance quantum simulator , 2016, 1609.01246.

[41]  José Raúl González Alonso,et al.  Out-of-Time-Ordered-Correlator Quasiprobabilities Robustly Witness Scrambling. , 2018, Physical review letters.

[42]  M. Rozali,et al.  Fine Grained Chaos in AdS_{2} Gravity. , 2017, Physical review letters.

[43]  S. Shenker,et al.  Black holes and the butterfly effect , 2013, Journal of High Energy Physics.

[44]  Patrick J. Coles,et al.  Entropic uncertainty relations and their applications , 2015, 1511.04857.

[45]  Iwo Bialynicki-Birula Formulation of the uncertainty relations in terms of the Rényi entropies , 2006 .

[46]  Maassen,et al.  Generalized entropic uncertainty relations. , 1988, Physical review letters.

[47]  D. Deutsch Uncertainty in Quantum Measurements , 1983 .

[48]  I. Chuang,et al.  Quantum Computation and Quantum Information: Bibliography , 2010 .

[49]  H. Fan,et al.  Experimental investigation of quantum entropic uncertainty relations for multiple measurements in pure diamond , 2017, Scientific Reports.

[50]  D. Stamper-Kurn,et al.  Interferometric Approach to Probing Fast Scrambling , 2016, 1607.01801.

[51]  Nicole Yunger Halpern,et al.  Resilience of scrambling measurements , 2018, Physical Review A.

[52]  M. Hafezi,et al.  Measurement of many-body chaos using a quantum clock , 2016, 1607.00079.

[53]  A. Rastegin Uncertainty relations for arbitrary measurement in terms of Renyi entropies , 2008, 0805.1777.

[54]  M. Tomamichel A framework for non-asymptotic quantum information theory , 2012, 1203.2142.

[55]  Nicole Yunger Halpern Jarzynski-like equality for the out-of-time-ordered correlator , 2016, 1609.00015.

[56]  Mark M. Wilde,et al.  Quantum Information Theory , 2013 .

[57]  J. Polchinski,et al.  The spectrum in the Sachdev-Ye-Kitaev model , 2016, 1601.06768.

[58]  Chuan-Feng Li,et al.  Experimental realization of sequential weak measurements of non-commuting Pauli observables. , 2018, Optics express.

[59]  P. Hayden,et al.  Measuring the scrambling of quantum information , 2016, 1602.06271.

[60]  F. Buscemi,et al.  Experimental Test of Entropic Noise-Disturbance Uncertainty Relations for Spin-1/2 Measurements. , 2015, Physical review letters.

[61]  J. Maldacena,et al.  Remarks on the Sachdev-Ye-Kitaev model , 2016, 1604.07818.

[62]  J. Lundeen,et al.  Procedure for direct measurement of general quantum states using weak measurement. , 2011, Physical review letters.

[63]  A. Tosi,et al.  Measuring Incompatible Observables by Exploiting Sequential Weak Values. , 2015, Physical review letters.

[64]  L. Tornberg,et al.  Reversing Quantum Trajectories with Analog Feedback , 2013, 1311.5472.

[65]  Daniel A. Roberts,et al.  Lieb-Robinson Bound and the Butterfly Effect in Quantum Field Theories. , 2016, Physical review letters.

[66]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[67]  Daniel A. Roberts,et al.  Chaos and complexity by design , 2016, 1610.04903.

[68]  David Gross,et al.  Computational power of quantum many-body states and some results on discrete phase spaces , 2008 .

[69]  Robert W Boyd,et al.  Compressive direct measurement of the quantum wave function. , 2014, Physical review letters.

[70]  Daniel A. Roberts,et al.  Chaos in quantum channels , 2015, 1511.04021.

[71]  P. Hayden,et al.  Towards the fast scrambling conjecture , 2011, Journal of High Energy Physics.