Simple background-independent Hamiltonian quantum model

We study a formulation and probabilistic interpretation of a simple general-relativistic Hamiltonian quantum system. The system has no unitary evolution in background time. The quantum theory yields transition probabilities between measurable quantities (partial observables). These converge to the classical predictions in the $\stackrel{\ensuremath{\rightarrow}}{\ensuremath{\Elzxh}}0$ limit. Our main tool is the kernel of the projector on the solutions of the Wheeler\char21{}deWitt equation, which we analyze in detail. It is a real quantity, which can be seen as a propagator that propagates ``forward'' as well as ``backward'' in a local parameter time. Individual quantum states, on the other hand, may contain only ``forward propagating'' components. The analysis sheds some light on the interpretation of background-independent transition amplitudes in quantum gravity.

[1]  Alejandro Perez,et al.  Spin Foam Models for Quantum Gravity , 2003, gr-qc/0301113.

[2]  T. Thiemann,et al.  Lectures on Loop Quantum Gravity , 2002, gr-qc/0210094.

[3]  E. Livine,et al.  Implementing causality in the spin foam quantum geometry , 2002, gr-qc/0210064.

[4]  J. Halliwell,et al.  Life in an energy eigenstate: Decoherent histories analysis of a model timeless universe , 2002 .

[5]  C. Rovelli,et al.  Relativistic quantum measurement , 2002, gr-qc/0203056.

[6]  C. Rovelli A note on the foundation of relativistic mechanics. I: Relativistic observables and relativistic states , 2001, gr-qc/0111037.

[7]  C. Rovelli,et al.  Spacetime states and covariant quantum theory , 2001, gr-qc/0111016.

[8]  C. Rovelli Partial observables , 2001, gr-qc/0110035.

[9]  T. Thiemann Introduction to Modern Canonical Quantum General Relativity , 2001, gr-qc/0110034.

[10]  D. Oriti Spacetime geometry from algebra: spin foam models for non-perturbative quantum gravity , 2001, gr-qc/0106091.

[11]  J. Halliwell Trajectories for the wave function of the universe from a simple detector model , 2000, gr-qc/0008046.

[12]  J. Baez An Introduction to spin foam models of quantum gravity and BF theory , 1999, gr-qc/9905087.

[13]  J. Hartle Spacetime Quantum Mechanics and the Quantum Mechanics of Spacetime , 1993, gr-qc/9304006.

[14]  C. Isham Canonical quantum gravity and the problem of time , 1992, gr-qc/9210011.

[15]  Rovelli,et al.  Time in quantum gravity: An hypothesis. , 1991, Physical review. D, Particles and fields.

[16]  Rovelli,et al.  Quantum mechanics without time: A model. , 1990, Physical review. D, Particles and fields.

[17]  William Rowan Hamilton,et al.  ON THE APPLICATION TO DYNAMICS OF A GENERAL MATHEMATICAL METHOD PREVIOUSLY APPLIED TO OPTICS By , 2000 .