Metal organic framework based mixed matrix membranes: an overview on filler/polymer interfaces

Membrane technology for gas separation has attracted significant attention because of its low energy consumption. However, most polymeric membranes suffer from the trade-off between mass transport rates and separation efficiency. Metal–organic frameworks (MOFs) are promising candidates to fabricate mixed matrix membranes (MMMs) for gas separation due to their high surface area and porosity, adjustable pore sizes and controllable surface functionality. This review presents the recent opportunities and challenges faced in MOF-based MMM fabrication, emphasizing the MOFs/polymer interfacial morphology. The state-of-the-art solutions and strategies for improving the filler/matrix interface are reviewed and evaluated in detail. Finally, the characterisation and understanding of the MMM interface morphology and future research directions are outlined. This review will offer some insights for fabricating MMMs with optimal interface morphology and separation performance.

[1]  Christian J. Doonan,et al.  Mixed-Matrix Membranes. , 2017, Angewandte Chemie.

[2]  Benny D. Freeman,et al.  Maximizing the right stuff: The trade-off between membrane permeability and selectivity , 2017, Science.

[3]  C. Janiak,et al.  Enhancing Mixed-Matrix Membrane Performance with Metal–Organic Framework Additives , 2017 .

[4]  C. Téllez,et al.  Gas separation with mixed matrix membranes obtained from MOF UiO-66-graphite oxide hybrids , 2017 .

[5]  Chen Zhang,et al.  Materials for next-generation molecularly selective synthetic membranes. , 2017, Nature materials.

[6]  Yatao Zhang,et al.  Improved operational stability of Pebax-based gas separation membranes with ZIF-8: A comparative study of flat sheet and composite hollow fibre membranes , 2017 .

[7]  Lian X. Liu,et al.  Surface-etched halloysite nanotubes in mixed matrix membranes for efficient gas separation , 2017 .

[8]  Z. Yamani,et al.  Tuning the Interplay between Selectivity and Permeability of ZIF-7 Mixed Matrix Membranes. , 2017, ACS applied materials & interfaces.

[9]  S. Kaliaguine,et al.  Crosslinked MOF-polymer to enhance gas separation of mixed matrix membranes , 2016 .

[10]  W. Dong,et al.  Metal-organic framework-graphene oxide composites: A facile method to highly improve the CO2 separation performance of mixed matrix membranes , 2016 .

[11]  Z. Jia,et al.  Metal-organic frameworks based mixed matrix membranes for pervaporation , 2016 .

[12]  Zhonghua Zhu,et al.  Ionic Liquids as the MOFs/Polymer Interfacial Binder for Efficient Membrane Separation. , 2016, ACS applied materials & interfaces.

[13]  F. Kapteijn,et al.  Azine-Linked Covalent Organic Framework (COF)-Based Mixed-Matrix Membranes for CO2 /CH4 Separation. , 2016, Chemistry.

[14]  F. Kapteijn,et al.  Influence of ZIF-8 particle size in the performance of polybenzimidazole mixed matrix membranes for pre-combustion CO2 capture and its validation through interlaboratory test , 2016 .

[15]  C. Serre,et al.  Toward an Understanding of the Microstructure and Interfacial Properties of PIMs/ZIF-8 Mixed Matrix Membranes. , 2016, ACS applied materials & interfaces.

[16]  M. Sarfraz,et al.  Synergistic effect of adding graphene oxide and ZIF-301 to polysulfone to develop high performance mixed matrix membranes for selective carbon dioxide separation from post combustion flue gas , 2016 .

[17]  Gongpin Liu,et al.  UiO-66-polyether block amide mixed matrix membranes for CO2 separation , 2016 .

[18]  C. Téllez,et al.  Increased Selectivity in CO2/CH4 Separation with Mixed-Matrix Membranes of Polysulfone and Mixed-MOFs MIL-101(Cr) and ZIF-8 , 2016 .

[19]  S. Japip,et al.  Particle-Size Effects on Gas Transport Properties of 6FDA-Durene/ZIF-71 Mixed Matrix Membranes , 2016 .

[20]  Yiming Cao,et al.  Improved Interfacial Affinity and CO2 Separation Performance of Asymmetric Mixed Matrix Membranes by Incorporating Postmodified MIL-53(Al). , 2016, ACS applied materials & interfaces.

[21]  Kai Yang,et al.  Simultaneous enhancement of mechanical properties and CO2 selectivity of ZIF-8 mixed matrix membranes: Interfacial toughening effect of ionic liquid , 2016 .

[22]  J. Long,et al.  Enhanced ethylene separation and plasticization resistance in polymer membranes incorporating metal-organic framework nanocrystals. , 2016, Nature materials.

[23]  A. Cooper,et al.  Porous organic cages: soluble, modular and molecular pores , 2016 .

[24]  Xiao Feng,et al.  Challenges and recent advances in MOF–polymer composite membranes for gas separation , 2016 .

[25]  Chongli Zhong,et al.  Fabrication of mixed-matrix membrane containing metal–organic framework composite with task-specific ionic liquid for efficient CO2 separation , 2016 .

[26]  F. Kapteijn,et al.  Metal Organic Framework Crystals in Mixed‐Matrix Membranes: Impact of the Filler Morphology on the Gas Separation Performance , 2016, Advanced functional materials.

[27]  M. Sarfraz,et al.  Synergistic effect of incorporating ZIF-302 and graphene oxide to polysulfone to develop highly selective mixed-matrix membranes for carbon dioxide separation from wet post-combustion flue gases , 2016 .

[28]  Zhonghua Zhu,et al.  Propylene/propane selective mixed matrix membranes with grape-branched MOF/CNT filler , 2016 .

[29]  Jianping Ma,et al.  An in situ self-assembled Cu4I4-MOF-based mixed matrix membrane: a highly sensitive and selective naked-eye sensor for gaseous HCl. , 2016, Chemical communications.

[30]  R. Banerjee,et al.  Chemically Stable Covalent Organic Framework (COF)-Polybenzimidazole Hybrid Membranes: Enhanced Gas Separation through Pore Modulation. , 2016, Chemistry.

[31]  Dan Zhao,et al.  Mixed Matrix Membranes (MMMs) Comprising Exfoliated 2D Covalent Organic Frameworks (COFs) for Efficient CO2 Separation , 2016 .

[32]  Zhengjie Li,et al.  Confinement of Ionic Liquids in Nanocages: Tailoring the Molecular Sieving Properties of ZIF-8 for Membrane-Based CO2 Capture. , 2015, Angewandte Chemie.

[33]  C. Téllez,et al.  Synthesis and characterisation of MOF/ionic liquid/chitosan mixed matrix membranes for CO2/N2 separation , 2015 .

[34]  S. Kentish,et al.  The impact of water vapor on CO2 separation performance of mixed matrix membranes , 2015 .

[35]  M. Tsapatsis,et al.  Zeolite membranes - a review and comparison with MOFs. , 2015, Chemical Society reviews.

[36]  Qingbiao Li,et al.  Metal−organic framework composite membranes: Synthesis and separation applications , 2015 .

[37]  A. Avci,et al.  Opportunities and challenges of MOF-based membranes in gas separations , 2015 .

[38]  S. Kaliaguine,et al.  Polymer functionalization to enhance interface quality of mixed matrix membranes for high CO2/CH4 gas separation , 2015 .

[39]  Andrew I. Cooper,et al.  Function-led design of new porous materials , 2015, Science.

[40]  D. D’Alessandro,et al.  Enhancing gas permeability in mixed matrix membranes through tuning the nanoparticle properties , 2015 .

[41]  Jong Hak Kim,et al.  Hollow ZIF-8 nanoparticles improve the permeability of mixed matrix membranes for CO2/CH4 gas separation , 2015 .

[42]  Y. Lee,et al.  Rigid and microporous polymers for gas separation membranes , 2015 .

[43]  Xiao Feng,et al.  Photoinduced postsynthetic polymerization of a metal-organic framework toward a flexible stand-alone membrane. , 2015, Angewandte Chemie.

[44]  Chongli Zhong,et al.  Mixed matrix membranes incorporated with amine-functionalized titanium-based metal-organic framework for CO2/CH4 separation , 2015 .

[45]  R. Forgan,et al.  The surface chemistry of metal-organic frameworks. , 2015, Chemical communications.

[46]  D. Cazorla-Amorós,et al.  Beyond the H2/CO2 upper bound: one-step crystallization and separation of nano-sized ZIF-11 by centrifugation and its application in mixed matrix membranes , 2015 .

[47]  M. Carreon,et al.  Metal organic framework membranes for carbon dioxide separation , 2015 .

[48]  R. Sun,et al.  A high performance O2 selective membrane based on CAU-1-NH2@polydopamine and the PMMA polymer for Li-air batteries. , 2015, Chemical communications.

[49]  F. Kapteijn,et al.  Metal–organic framework based mixed matrix membranes: a solution for highly efficient CO2 capture?† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c4cs00437j Click here for additional data file. , 2015, Chemical Society reviews.

[50]  D. Luebke,et al.  Fabrication of MMMs with improved gas separation properties using externally-functionalized MOF particles , 2015 .

[51]  C. Doonan,et al.  Synthesis and Applications of Porous Organic Cages , 2015 .

[52]  Tao Wang,et al.  ZIF-8/PDMS mixed matrix membranes for propane/nitrogen mixture separation: Experimental result and permeation model validation , 2015 .

[53]  Tianyu Liu,et al.  Enhanced interfacial interaction and CO2 separation performance of mixed matrix membrane by incorporating polyethylenimine-decorated metal-organic frameworks. , 2015, ACS applied materials & interfaces.

[54]  Dc Kitty Nijmeijer,et al.  Performance and plasticization behavior of polymer–MOF membranes for gas separation at elevated pressures , 2014 .

[55]  Freek Kapteijn,et al.  Metal-organic framework nanosheets in polymer composite materials for gas separation , 2014, Nature materials.

[56]  W. Koros,et al.  Highly scalable ZIF‐based mixed‐matrix hollow fiber membranes for advanced hydrocarbon separations , 2014 .

[57]  F. Kapteijn,et al.  Mixed matrix membranes based on NH2-functionalized MIL-type MOFs: Influence of structural and operational parameters on the CO2/CH4 separation performance , 2014 .

[58]  C. Téllez,et al.  Mixed matrix membranes for gas separation by combination of silica MCM-41 and MOF NH2-MIL-53(Al) in glassy polymers , 2014 .

[59]  Aaron W Thornton,et al.  Ending aging in super glassy polymer membranes. , 2014, Angewandte Chemie.

[60]  C. Téllez,et al.  Mixed matrix membranes comprising MOFs and porous silicate fillers prepared via spin coating for gas separation , 2014 .

[61]  Zhonghua Zhu,et al.  Mixed matrix membranes with strengthened MOFs/polymer interfacial interaction and improved membrane performance. , 2014, ACS applied materials & interfaces.

[62]  Seda Keskin,et al.  Molecular modeling of MOF and ZIF-filled MMMs for CO2/N2 separations , 2014 .

[63]  Shuichi Sato,et al.  Characterization and gas permeation properties of polyimide/ZSM-5 zeolite composite membranes containing ionic liquid , 2014 .

[64]  Dan Hua,et al.  ZIF-90/P84 mixed matrix membranes for pervaporation dehydration of isopropanol , 2014 .

[65]  S. Kaliaguine,et al.  Effect of macrovoids in nano-silica/polyimide mixed matrix membranes for high flux CO2/CH4 gas separation , 2014 .

[66]  Gang Zhang,et al.  Organic cage compounds--from shape-persistency to function. , 2014, Chemical Society reviews.

[67]  C. Téllez,et al.  Mixed matrix membranes comprising silica-(ZIF-8) core–shell spheres with ordered meso–microporosity for natural- and bio-gas upgrading , 2014 .

[68]  S. Nair,et al.  Rigorous calculations of permeation in mixed-matrix membranes: Evaluation of interfacial equilibrium effects and permeability-based models , 2013 .

[69]  I. Vankelecom,et al.  Mixed matrix membranes comprising of Matrimid and -SO3H functionalized mesoporous MCM-41 for gas separation , 2013 .

[70]  S. Kaliaguine,et al.  Optimization of continuous phase in amino-functionalized metal–organic framework (MIL-53) based co-polyimide mixed matrix membranes for CO2/CH4 separation , 2013 .

[71]  C. Téllez,et al.  Crystallization in THF: the possibility of one-pot synthesis of mixed matrix membranes containing MOF MIL-68(Al) , 2013 .

[72]  S. Calero,et al.  Effect of Room-Temperature Ionic Liquids on CO2 Separation by a Cu-BTC Metal–Organic Framework , 2013 .

[73]  Mohammad Askari,et al.  Natural gas purification and olefin/paraffin separation using thermal cross-linkable co-polyimide/ZIF-8 mixed matrix membranes , 2013 .

[74]  Michael O’Keeffe,et al.  The Chemistry and Applications of Metal-Organic Frameworks , 2013, Science.

[75]  Lujie Cao,et al.  A highly permeable mixed matrix membrane containing CAU-1-NH2 for H2 and CO2 separation. , 2013, Chemical communications.

[76]  Seda Keskin,et al.  Recent advances in metal-organic framework-based mixed matrix membranes. , 2013, Chemistry, an Asian journal.

[77]  C. Téllez,et al.  NH2-MIL-53(Al) and NH2-MIL-101(Al) in sulfur-containing copolyimide mixed matrix membranes for gas separation , 2013 .

[78]  Tai‐Shung Chung,et al.  Room temperature ionic liquid/ZIF-8 mixed-matrix membranes for natural gas sweetening and post-combustion CO2 capture , 2013 .

[79]  J. Ferraris,et al.  Surface Cross-Linking of ZIF-8/Polyimide Mixed Matrix Membranes (MMMs) for Gas Separation , 2013 .

[80]  Zhonghua Zhu,et al.  Mixed matrix membranes incorporated with size-reduced Cu-BTC for improved gas separation , 2013 .

[81]  S. Kaliaguine,et al.  Predictive models for mixed-matrix membrane performance: a review. , 2013, Chemical reviews.

[82]  D. Bastani,et al.  Polymeric mixed matrix membranes containing zeolites as a filler for gas separation applications: A review , 2013 .

[83]  V. Chen,et al.  Challenges and opportunities for mixed-matrix membranes for gas separation , 2013 .

[84]  Shuichi Sato,et al.  CO2 separation properties of a glassy aromatic polyimide composite membranes containing high-content 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ionic liquid , 2013 .

[85]  F. Kapteijn,et al.  Metal organic framework based mixed matrix membranes: An increasingly important field of research with a large application potential , 2013 .

[86]  C. Janiak,et al.  Metal-organic frameworks in mixed-matrix membranes for gas separation. , 2012, Dalton transactions.

[87]  M. Buonomenna,et al.  Some approaches for high performance polymer based membranes for gas separation: block copolymers, carbon molecular sieves and mixed matrix membranes , 2012 .

[88]  Ting Yang,et al.  Polybenzimidazole (PBI)/zeolitic imidazolate frameworks (ZIF-8) mixed matrix membranes for pervaporation dehydration of alcohols , 2012 .

[89]  K. Kunze,et al.  Visualization of hierarchically structured zeolite bodies from macro to nano length scales. , 2012, Nature chemistry.

[90]  Omid Ghaffari Nik,et al.  Functionalized metal organic framework-polyimide mixed matrix membranes for CO2/CH4 separation , 2012 .

[91]  M. A. Alam,et al.  Zeolitic imidazolate framework (ZIF-8) based polymer nanocomposite membranes for gas separation , 2012 .

[92]  Honglai Liu,et al.  Affinity between Metal―Organic Frameworks and Polyimides in Asymmetric Mixed Matrix Membranes for Gas Separations , 2012 .

[93]  Seda Keskin,et al.  Computational screening of metal organic frameworks for mixed matrix membrane applications , 2012 .

[94]  D. Sholl,et al.  Ultem®/ZIF-8 mixed matrix hollow fiber membranes for CO2/N2 separations , 2012 .

[95]  Denis Rodrigue,et al.  Amine-Functionalized MIL-53 Metal–Organic Framework in Polyimide Mixed Matrix Membranes for CO2/CH4 Separation , 2012 .

[96]  Gérard Férey,et al.  Metal-organic frameworks in biomedicine. , 2012, Chemical reviews.

[97]  Omar K Farha,et al.  Metal-organic framework materials as chemical sensors. , 2012, Chemical reviews.

[98]  Hong-Cai Zhou,et al.  Metal-organic frameworks for separations. , 2012, Chemical reviews.

[99]  Kenji Sumida,et al.  Carbon dioxide capture in metal-organic frameworks. , 2012, Chemical reviews.

[100]  Ying Dai,et al.  High performance ZIF-8/6FDA-DAM mixed matrix membrane for propylene/propane separations , 2012 .

[101]  C. Janiak,et al.  A method for increasing permeability in O2/N2 separation with mixed-matrix membranes made of water-stable MIL-101 and polysulfone. , 2012, Chemical communications.

[102]  Seda Keskin,et al.  Screening Metal–Organic Framework-Based Mixed-Matrix Membranes for CO2/CH4 Separations , 2011 .

[103]  J. M. Zamaro,et al.  Combination of MOFs and zeolites for mixed-matrix membranes. , 2011, Chemphyschem : a European journal of chemical physics and physical chemistry.

[104]  Ting Yang,et al.  Poly-/metal-benzimidazole nano-composite membranes for hydrogen purification , 2011 .

[105]  Richard D. Noble,et al.  Perspectives on mixed matrix membranes , 2011 .

[106]  Freek Kapteijn,et al.  Functionalized flexible MOFs as fillers in mixed matrix membranes for highly selective separation of CO2 from CH4 at elevated pressures. , 2011, Chemical communications.

[107]  J. V. van Bokhoven,et al.  Catalysis by metal-organic frameworks: fundamentals and opportunities. , 2011, Physical chemistry chemical physics : PCCP.

[108]  Zhonghua Zhu,et al.  Enhanced gas permeability by fabricating functionalized multi-walled carbon nanotubes and polyethersulfone nanocomposite membrane , 2011 .

[109]  Shaomin Liu,et al.  Investigation of Gas Permeability in Carbon Nanotube (CNT)−Polymer Matrix Membranes via Modifying CNTs with Functional Groups/Metals and Controlling Modification Location , 2011 .

[110]  R. Noble,et al.  Novel mixed matrix membranes based on polymerizable room-temperature ionic liquids and SAPO-34 parti , 2011 .

[111]  H. Tseng,et al.  Effect of SBA-15 texture on the gas separation characteristics of SBA-15/polymer multilayer mixed ma , 2011 .

[112]  C. Téllez,et al.  Mixed matrix membranes comprising glassy polymers and dispersed mesoporous silica spheres for gas separation , 2011 .

[113]  Christopher W. Jones,et al.  A high-performance gas-separation membrane containing submicrometer-sized metal-organic framework crystals. , 2010, Angewandte Chemie.

[114]  A. Ismail,et al.  Performance studies of mixed matrix membranes for gas separation: A review , 2010 .

[115]  C. Janiak,et al.  MOFs, MILs and more: concepts, properties and applications for porous coordination networks (PCNs) , 2010 .

[116]  S. Basu,et al.  Asymmetric Matrimid®/[Cu3(BTC)2] mixed-matrix membranes for gas separations , 2010 .

[117]  Wenbin Lin,et al.  A series of isoreticular chiral metal-organic frameworks as a tunable platform for asymmetric catalysis. , 2010, Nature chemistry.

[118]  J. Ferraris,et al.  Molecular sieving realized with ZIF-8/Matrimid® mixed-matrix membranes , 2010 .

[119]  Randall Q. Snurr,et al.  Ultrahigh Porosity in Metal-Organic Frameworks , 2010, Science.

[120]  H. Tseng,et al.  Fabrication and characterization of poly(phenylene oxide)/ SBA-15/carbon molecule sieve multilayer mixed matrix membrane for gas separation , 2010 .

[121]  S. Kaliaguine,et al.  Amine grafted silica/SPEEK nanocomposites as proton exchange membranes. , 2010, The journal of physical chemistry. B.

[122]  Jason K. Ward,et al.  Metal organic framework mixed matrix membranes for gas separations , 2010 .

[123]  R. Noble,et al.  A three-component mixed-matrix membrane with enhanced CO2 separation properties based on zeolites and ionic liquid materials , 2010 .

[124]  D. Sholl,et al.  Selecting metal organic frameworks as enabling materials in mixed matrix membranes for high efficiency natural gas purification , 2010 .

[125]  Gérard Férey,et al.  Porous metal-organic-framework nanoscale carriers as a potential platform for drug delivery and imaging. , 2010, Nature materials.

[126]  C. Téllez,et al.  Mesoporous silica sphere-polysulfone mixed matrix membranes for gas separation. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[127]  Hong-Cai Zhou,et al.  Selective gas adsorption and separation in metal-organic frameworks. , 2009, Chemical Society reviews.

[128]  Mircea Dincă,et al.  Hydrogen storage in metal-organic frameworks. , 2009, Chemical Society reviews.

[129]  J. Ferraris,et al.  Mixed-matrix membranes containing MOF-5 for gas separations , 2009 .

[130]  L. Jiang,et al.  β-Cyclodextrin containing Matrimid® sub-nanocomposite membranes for pervaporation application , 2009 .

[131]  M. Tsapatsis,et al.  A semi-empirical approach for predicting the performance of mixed matrix membranes containing selective flakes , 2009 .

[132]  Constantine D. Papaspyrides,et al.  A review on polymer–layered silicate nanocomposites , 2008 .

[133]  A. Ismail,et al.  Characterization of polyethersulfone/Matrimid® 5218 miscible blend mixed matrix membranes for O2/N2 gas separation , 2008 .

[134]  Sangil Kim,et al.  High permeability nano-composite membranes based on mesoporous MCM-41 nanoparticles in a polysulfone matrix , 2008 .

[135]  Yi Li,et al.  Exploratory development of dual-layer carbon–zeolite nanocomposite hollow fiber membranes with high performance for oxygen enrichment and natural gas separation , 2008 .

[136]  A. Ismail,et al.  Dependence of membrane morphology and performance on preparation conditions: The shear rate effect in membrane casting , 2008 .

[137]  L. Robeson,et al.  The upper bound revisited , 2008 .

[138]  A. Ismail,et al.  Enhanced gas permeation performance of polyethersulfone mixed matrix hollow fiber membranes using novel Dynasylan Ameo silane agent , 2008 .

[139]  Michael O'Keeffe,et al.  Reticular chemistry of metal-organic polyhedra. , 2008, Angewandte Chemie.

[140]  Stephen J. Miller,et al.  Crosslinked mixed matrix membranes for the purification of natural gas: Effects of sieve surface modification , 2008 .

[141]  Michael D. Guiver,et al.  Polysulfone/silica nanoparticle mixed-matrix membranes for gas separation , 2008 .

[142]  J. Ferraris,et al.  Gas permeability properties of Matrimid® membranes containing the metal-organic framework Cu–BPY–HFS , 2008 .

[143]  A. Ismail,et al.  Effect of carbon molecular sieve sizing with poly(vinyl pyrrolidone) K-15 on carbon molecular sieve–polysulfone mixed matrix membrane , 2008 .

[144]  Brian F. Towler,et al.  Polymer-inorganic nanocomposite membranes for gas separation , 2007 .

[145]  M. Tsapatsis,et al.  A model for the performance of microporous mixed matrix membranes with oriented selective flakes , 2007 .

[146]  Sangil Kim,et al.  Polysulfone and functionalized carbon nanotube mixed matrix membranes for gas separation: Theory and experiment , 2007 .

[147]  Yi Li,et al.  MIXED MATRIX MEMBRANES (MMMS) COMPRISING ORGANIC POLYMERS WITH DISPERSED INORGANIC FILLERS FOR GAS SEPARATION , 2007 .

[148]  William J. Koros,et al.  Mixed matrix hollow fiber membranes made with modified HSSZ-13 zeolite in polyetherimide polymer matrix for gas separation , 2007 .

[149]  Kai Yu Wang,et al.  Evolution of nano-particle distribution during the fabrication of mixed matrix TiO2-polyimide hollow fiber membranes , 2006 .

[150]  Michael O’Keeffe,et al.  Exceptional chemical and thermal stability of zeolitic imidazolate frameworks , 2006, Proceedings of the National Academy of Sciences.

[151]  Sangil Kim,et al.  Fabrication and characterization of polyimide–zeolite L mixed matrix membranes for gas separations , 2006 .

[152]  Xiaoping Liang,et al.  Preparation and characterization of zirconium oxide particles filled acrylonitrile-methyl acrylate-sodium sulfonate acrylate copolymer hybrid membranes , 2006 .

[153]  Sangil Kim,et al.  Poly(imide siloxane) and carbon nanotube mixed matrix membranes for gas separation , 2006 .

[154]  Franz Faupel,et al.  Free Volume in Polyimides: Positron Annihilation Experiments and Molecular Modeling , 2005 .

[155]  S. Kulprathipanja,et al.  The effects of polymer chain rigidification, zeolite pore size and pore blockage on polyethersulfone (PES)-zeolite A mixed matrix membranes , 2005 .

[156]  Zhen Huang,et al.  Fundamental understanding of nano-sized zeolite distribution in the formation of the mixed matrix single- and dual-layer asymmetric hollow fiber membranes , 2005 .

[157]  W. Koros,et al.  Non-ideal effects in organic-inorganic materials for gas separation membranes , 2005 .

[158]  Susumu Kitagawa,et al.  Functional porous coordination polymers. , 2004, Angewandte Chemie.

[159]  William J. Koros,et al.  Mixed matrix membranes using carbon molecular sieves: I. Preparation and experimental results , 2003 .

[160]  R. Mahajan,et al.  Factors Controlling Successful Formation of Mixed-Matrix Gas Separation Materials , 2000 .

[161]  G. Maier Gas Separation with Polymer Membranes. , 1998, Angewandte Chemie.

[162]  B. Freeman,et al.  Gas Permeability and Phase Morphology of Poly(1-(trimethylsilyl)-1-propyne)/Poly(1-phenyl-1-propyne) Blends , 1997 .

[163]  E. Drioli,et al.  Permeation through a heterogeneous membrane: the effect of the dispersed phase , 1997 .

[164]  I. Genné,et al.  Effect of the addition of ZrO2 to polysulfone based UF membranes , 1996 .

[165]  L. Robeson,et al.  Correlation of separation factor versus permeability for polymeric membranes , 1991 .

[166]  Xiangping Zhang,et al.  Combination of ionic liquids with membrane technology: a new approach for CO2 separation , 2016 .

[167]  Chongli Zhong,et al.  Synthesis of MIL-88B(Fe)/Matrimid mixed-matrix membranes with high hydrogen permselectivity , 2015 .

[168]  Freek Kapteijn,et al.  Visualizing MOF Mixed Matrix Membranes at the Nanoscale: Towards Structure‐Performance Relationships in CO2/CH4 Separation Over NH2‐MIL‐53(Al)@PI , 2014 .

[169]  A. Ismail,et al.  State-of-the-art membrane based CO2 separation using mixed matrix membranes (MMMs): An overview on current status and future directions , 2014 .

[170]  W. Koros,et al.  A General Strategy for Adhesion Enhancement in Polymeric Composites by Formation of Nanostructured Particle Surfaces , 2007 .