Noninvasive IDH1 mutation estimation based on a quantitative radiomics approach for grade II glioma

[1]  Satoshi O. Suzuki,et al.  Grading diffuse gliomas without intense contrast enhancement by amide proton transfer MR imaging: comparisons with diffusion- and perfusion-weighted imaging , 2017, European Radiology.

[2]  Masoom A. Haider,et al.  MAPS: A Quantitative Radiomics Approach for Prostate Cancer Detection , 2016, IEEE Transactions on Biomedical Engineering.

[3]  P. Lambin,et al.  Exploratory Study to Identify Radiomics Classifiers for Lung Cancer Histology , 2016, Front. Oncol..

[4]  Victor Alves,et al.  Brain Tumor Segmentation Using Convolutional Neural Networks in MRI Images , 2016, IEEE Transactions on Medical Imaging.

[5]  Andrei I Holodny,et al.  Integration of 2-hydroxyglutarate-proton magnetic resonance spectroscopy into clinical practice for disease monitoring in isocitrate dehydrogenase-mutant glioma. , 2016, Neuro-oncology.

[6]  K. Yamashita,et al.  MR Imaging–Based Analysis of Glioblastoma Multiforme: Estimation of IDH1 Mutation Status , 2016, American Journal of Neuroradiology.

[7]  Paul Kinahan,et al.  Radiomics: Images Are More than Pictures, They Are Data , 2015, Radiology.

[8]  Hui Zhang,et al.  The diagnostic performance of magnetic resonance spectroscopy in differentiating high-from low-grade gliomas: A systematic review and meta-analysis , 2016, European Radiology.

[9]  Jane Labadin,et al.  Feature selection based on mutual information , 2015, 2015 9th International Conference on IT in Asia (CITA).

[10]  P. Lambin,et al.  Radiomic Machine-Learning Classifiers for Prognostic Biomarkers of Head and Neck Cancer , 2015, Front. Oncol..

[11]  Hiroko Yamashita,et al.  Identifying Triple-Negative Breast Cancer Using Background Parenchymal Enhancement Heterogeneity on Dynamic Contrast-Enhanced MRI: A Pilot Radiomics Study , 2015, PloS one.

[12]  Sabina Sonia Tangaro,et al.  Automated hippocampal segmentation in 3D MRI using random undersampling with boosting algorithm , 2015, Pattern Analysis and Applications.

[13]  Steven J. M. Jones,et al.  Comprehensive, Integrative Genomic Analysis of Diffuse Lower-Grade Gliomas. , 2015, The New England journal of medicine.

[14]  Giuseppe Lombardi,et al.  Diagnostic value of plasma and urinary 2-hydroxyglutarate to identify patients with isocitrate dehydrogenase-mutated glioma. , 2015, The oncologist.

[15]  J. Huse,et al.  The Evolving Molecular Genetics of Low-grade Glioma , 2015, Advances in anatomic pathology.

[16]  S. Li,et al.  Anatomical localization of isocitrate dehydrogenase 1 mutation: a voxel‐based radiographic study of 146 low‐grade gliomas , 2015, European journal of neurology.

[17]  Zhifeng Shi,et al.  TERT promoter mutations contribute to subset prognostication of lower-grade gliomas , 2015, Modern Pathology.

[18]  L Wang,et al.  Mapping p53 Mutations in Low-Grade Glioma: A Voxel-Based Neuroimaging Analysis , 2015, American Journal of Neuroradiology.

[19]  F. Turkheimer,et al.  A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities , 2015 .

[20]  P. Lambin,et al.  Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach , 2014, Nature Communications.

[21]  S. Choi,et al.  Evaluation of the microenvironmental heterogeneity in high-grade gliomas with IDH1/2 gene mutation using histogram analysis of diffusion-weighted imaging and dynamic-susceptibility contrast perfusion imaging , 2014, Journal of Neuro-Oncology.

[22]  K. Aldape,et al.  IDH1 mutant malignant astrocytomas are more amenable to surgical resection and have a survival benefit associated with maximal surgical resection. , 2014, Neuro-oncology.

[23]  B. Rosen,et al.  Detection of oncogenic IDH1 mutations using magnetic resonance spectroscopy of 2-hydroxyglutarate. , 2013, The Journal of clinical investigation.

[24]  G. Reifenberger,et al.  Molecular neuro-oncology in clinical practice: a new horizon. , 2013, The Lancet. Oncology.

[25]  Robert J. Harris,et al.  Anatomic localization of O6-methylguanine DNA methyltransferase (MGMT) promoter methylated and unmethylated tumors: A radiographic study in 358 de novo human glioblastomas , 2012, NeuroImage.

[26]  Hong Wu,et al.  Non-invasive detection of 2-hydroxyglutarate and other metabolites in IDH1 mutant glioma patients using magnetic resonance spectroscopy , 2012, Journal of Neuro-Oncology.

[27]  Alexander Gammerman,et al.  Machine learning classification with confidence: Application of transductive conformal predictors to MRI-based diagnostic and prognostic markers in depression , 2011, NeuroImage.

[28]  Santosh Kesari,et al.  Malignant gliomas in adults. , 2008, The New England journal of medicine.

[29]  Fuhui Long,et al.  Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy , 2003, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[30]  Corinna Cortes,et al.  Support-Vector Networks , 1995, Machine Learning.

[31]  G. Collewet,et al.  Influence of MRI acquisition protocols and image intensity normalization methods on texture classification. , 2004, Magnetic resonance imaging.

[32]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[33]  N. Tzourio-Mazoyer,et al.  Automated Anatomical Labeling of Activations in SPM Using a Macroscopic Anatomical Parcellation of the MNI MRI Single-Subject Brain , 2002, NeuroImage.

[34]  J Mazziotta,et al.  A probabilistic atlas and reference system for the human brain: International Consortium for Brain Mapping (ICBM). , 2001, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[35]  John C. Mazziotta,et al.  A Probabilistic Atlas and Reference System for the Human Brain , 2001 .

[36]  M. Scott,et al.  The developmental biology of brain tumors. , 2001, Annual review of neuroscience.

[37]  Yoram Singer,et al.  Improved Boosting Algorithms Using Confidence-rated Predictions , 1998, COLT' 98.

[38]  Robert M. Haralick,et al.  Textural Features for Image Classification , 1973, IEEE Trans. Syst. Man Cybern..