Renormalization-group approach to the stochastic Navier--Stokes equation: Two-loop approximation
暂无分享,去创建一个
A. N. Vasil'ev | Mikhail Kompaniets | M. Kompaniets | L. Ts. Adzhemyan | N. Antonov | L. Adzhemyan | N. V. Antonov
[1] Shiyi Chen,et al. Sweeping decorrelation in isotropic turbulence , 1989 .
[2] Robert H. Kraichnan,et al. An interpretation of the Yakhot–Orszag turbulence theory , 1987 .
[3] U. Frisch,et al. Infinite-dimensional turbulence , 1978 .
[4] Vahala,et al. Renormalized eddy viscosity and Kolmogorov's constant in forced Navier-Stokes turbulence. , 1989, Physical review. A, General physics.
[5] Robert H. Kraichnan,et al. Small‐Scale Structure of a Scalar Field Convected by Turbulence , 1968 .
[6] M. Giles. TURBULENCE RENORMALIZATION GROUP CALCULATIONS USING STATISTICAL MECHANICS METHODS , 1994 .
[7] M. Vergassola,et al. Particles and fields in fluid turbulence , 2001, cond-mat/0105199.
[8] L. Adzhemyan,et al. Renormalization group in turbulence theory: Exactly solvable Heisenberg model , 1998 .
[9] A. N. Vasil'ev,et al. Renormalization-group approach in the theory of turbulence: The dimensions of composite operators , 1983 .
[10] N. Antonov,et al. Composite operators, operator expansion, and Galilean invariance in the theory of fully developed turbulence. Infrared corrections to Kolmogorov scaling , 1994 .
[11] S. H. Lam,et al. On the RNG theory of turbulence , 1992 .
[12] Steven A. Orszag,et al. Analytical theories of turbulence and the ε expansion , 1987 .
[13] Yasutaka Nagano,et al. Renormalization group theory for turbulence: Assessment of the Yakhot-Orszag-Smith theory , 1997 .