Effect of multiple scattering on the phase signature of wet subsurface structures: applications to polarimetric L- and C-band SAR

We propose a two-layer integral equation model (IEM) model including multiple-scattering terms to reproduce the phase signature of buried wet structures that we observed on L-band synthetic aperture radar (SAR) images. We have good agreement between the extended (single+multiple scattering) IEM model and previous results obtained using a single-scattering IEM model combined with finite-difference time-domain simulations. We show that the multiple scattering not only significantly influences the copolarized phase difference but can also be related to the soil moisture content. In order to assess the validity of our extended model, we performed radar measurements on a natural outdoor site and showed that they could be fairly well fitted to the extended model. A parametric analysis presents the dependence of the copolarized phase difference on roughness parameters (rms height and correlation length) and radar parameters (frequency and incidence angle). Our study also shows that the phase signature should allow detection of buried wet structures down to a larger depth for C-band (3.8 m) than for L-band (2.6 m). This signature could then be used to map subsurface moisture in arid regions using polarimetric SAR systems.

[1]  Nicolas Baghdadi,et al.  Subsurface structures detection by combining L-band polarimetric SAR and GPR data: example of the Pyla Dune (France) , 2001, IEEE Trans. Geosci. Remote. Sens..

[2]  Kun-Shan Chen,et al.  A reappraisal of the validity of the IEM model for backscattering from rough surfaces , 2004, IEEE Trans. Geosci. Remote. Sens..

[3]  Jiancheng Shi,et al.  Estimation of bare surface soil moisture and surface roughness parameter using L-band SAR image data , 1997, IEEE Trans. Geosci. Remote. Sens..

[4]  Pascale C. Dubois,et al.  Measuring soil moisture with imaging radars , 1995, IEEE Trans. Geosci. Remote. Sens..

[5]  A. Beaudoin,et al.  SAR observations and modeling of the C-band backscatter variability due to multiscale geometry and soil moisture , 1990 .

[6]  A. Fung Microwave Scattering and Emission Models and their Applications , 1994 .

[7]  Thuy Le Toan,et al.  The effect of surface roughness on multifrequency polarimetric SAR data , 1997, IEEE Trans. Geosci. Remote. Sens..

[8]  A. Fung,et al.  Dependence of the surface backscattering coefficients on roughness, frequency and polarization states , 1992 .

[9]  Adrian K. Fung,et al.  Backscattering from a randomly rough dielectric surface , 1992, IEEE Trans. Geosci. Remote. Sens..

[10]  J R Carr,et al.  Establishing a relationship between soil moisture and RADARSAT-1 SAR data obtained over the Great Basin, Nevada, U.S.A. , 2004 .

[11]  Jiancheng Shi,et al.  A Model-Based Inversion of Rough Soil Surface Parameters From Radar Measurements , 2001 .

[12]  Rajat Bindlish,et al.  Subpixel variability of remotely sensed soil moisture: an inter-comparison study of SAR and ESTAR , 2002, IEEE Trans. Geosci. Remote. Sens..

[13]  J. Kong,et al.  Theory of microwave remote sensing , 1985 .

[14]  S. Okarnura,et al.  New Method for Moisture Content Measurement Using Phase Shifts at Two Microwave Frequencies , 2000, The Journal of microwave power and electromagnetic energy : a publication of the International Microwave Power Institute.

[15]  Wolfgang Dierking,et al.  Quantitative roughness characterization of geological surfaces and implications for radar signature analysis , 1999, IEEE Trans. Geosci. Remote. Sens..

[16]  A. K. Fung,et al.  A further study of the IEM surface scattering model , 1996, IGARSS '96. 1996 International Geoscience and Remote Sensing Symposium.

[17]  W. C. Elmore,et al.  Physics of Waves , 1969 .

[18]  Malcolm Davidson,et al.  On the characterization of agricultural soil roughness for radar remote sensing studies , 2000, IEEE Trans. Geosci. Remote. Sens..

[19]  Giorgio Franceschetti,et al.  A fractal-based theoretical framework for retrieval of surface parameters from electromagnetic backscattering data , 2000, IEEE Trans. Geosci. Remote. Sens..

[20]  A. Fung,et al.  A transition model for the reflection coefficient in surface scattering , 1998, IGARSS '98. Sensing and Managing the Environment. 1998 IEEE International Geoscience and Remote Sensing. Symposium Proceedings. (Cat. No.98CH36174).

[21]  Kun-Shan Chen,et al.  Note on the multiple scattering in an IEM model , 2000, IEEE Trans. Geosci. Remote. Sens..

[22]  Philippe Paillou,et al.  A phase signature for detecting wet subsurface structures using polarimetric L-band SAR , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[23]  Kamal Sarabandi,et al.  An empirical model and an inversion technique for radar scattering from bare soil surfaces , 1992, IEEE Trans. Geosci. Remote. Sens..

[24]  N. F. Glenn,et al.  Technical Note / Note technique Establishing a relationship between soil moisture and RADARSAT-1 SAR data obtained over the Great Basin, Nevada, U.S.A. , 2004 .

[25]  Yangjun Zhang,et al.  New density-independent moisture measurement using microwave phase shifts at two frequencies , 1999, IEEE Trans. Instrum. Meas..

[26]  F. Ulaby,et al.  Microwave Backscatter Dependence on Surface Roughness, Soil Moisture, and Soil Texture: Part I-Bare Soil , 1978, IEEE Transactions on Geoscience Electronics.

[27]  Qin Li,et al.  A generalized power law spectrum and its applications to the backscattering of soil surfaces based on the integral equation model , 2002, IEEE Trans. Geosci. Remote. Sens..

[28]  Pascale C. Dubois,et al.  Corrections to "Measuring Soil Moisture with Imaging Radars" , 1995, IEEE Trans. Geosci. Remote. Sens..

[29]  Kamal Sarabandi,et al.  An empirical model for phase difference statistics of rough surfaces , 1993, Proceedings of IGARSS '93 - IEEE International Geoscience and Remote Sensing Symposium.