Bloch Waves in an Arbitrary Two-Dimensional Lattice of Subwavelength Dirichlet Scatterers

We study waves governed by the planar Helmholtz equation, propagating in an infinite lattice of subwavelength Dirichlet scatterers, the periodicity being comparable to the wavelength. Applying the method of matched asymptotic expansions, the scatterers are effectively replaced by asymptotic point constraints. The resulting coarse-grained Bloch-wave dispersion problem is solved by a generalised Fourier series, whose singular asymptotics in the vicinities of scatterers yield the dispersion relation governing modes that are strongly perturbed from plane-wave solutions existing in the absence of the scatterers; there are also empty-lattice waves that are only weakly perturbed. Characterising the latter is useful in interpreting and potentially designing the dispersion diagrams of such lattices. The method presented, that simplifies and expands on Krynkin & McIver [Waves Random Complex, 19 347 2009], could be applied in the future to study more sophisticated designs entailing resonant subwavelength elements distributed over a lattice with periodicity on the order of the operating wavelength.

[1]  Steven G. Johnson,et al.  Subwavelength imaging in photonic crystals , 2003 .

[2]  P. McIver,et al.  Propagation of elastic waves through a lattice of cylindrical cavities , 2011, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[3]  D. V. Evans,et al.  Penetration of flexural waves through a periodically constrained thin elastic plate in vacuo and floating on water , 2007 .

[4]  Lloyd N. Trefethen,et al.  Mathematics of the Faraday Cage , 2015, SIAM Rev..

[5]  A B Movchan,et al.  Dynamic interfacial trapping of flexural waves in structured plates , 2015, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[6]  L. Foldy,et al.  The Multiple Scattering of Waves. I. General Theory of Isotropic Scattering by Randomly Distributed Scatterers , 1945 .

[7]  Anton Krynkin,et al.  Approximations to wave propagation through a lattice of Dirichlet scatterers , 2009 .

[8]  Ann P. Dowling,et al.  Modern Methods in Analytical Acoustics: Lecture Notes , 1992 .

[9]  Richard Craster,et al.  High-frequency homogenization of zero-frequency stop band photonic and phononic crystals , 2013, 1304.5782.

[10]  Y. Kivshar,et al.  Wire Metamaterials: Physics and Applications , 2012, Advanced materials.

[11]  M. Soljačić,et al.  Topological photonics , 2014, Nature Photonics.

[12]  Ross C. McPhedran,et al.  Double Dirac cones at k = 0 in pinned platonic crystals , 2014 .

[13]  I. Hewitt,et al.  Homogenized boundary conditions and resonance effects in Faraday cages , 2016, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[14]  A R Plummer,et al.  Introduction to Solid State Physics , 1967 .

[15]  Agnès Maurel,et al.  Multiple scattering by random configurations of circular cylinders: Weak scattering without closure assumptions , 2008 .

[16]  Alan E. Lindsay,et al.  Under Consideration for Publication in the Siam Journal of Applied Math the Transition to a Point Constraint in a Mixed Biharmonic Eigenvalue Problem , 2022 .

[17]  A B Movchan,et al.  ‘Parabolic’ trapped modes and steered Dirac cones in platonic crystals , 2014, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[18]  Masaya Notomi,et al.  Self-collimating phenomena in photonic crystals , 1999 .

[19]  Petra Holtzmann,et al.  Optical Properties Of Photonic Crystals , 2016 .

[20]  Toshihiko Baba,et al.  Slow light in photonic crystals , 2008 .

[21]  Joseph B. Keller,et al.  Slender-body theory for slow viscous flow , 1976, Journal of Fluid Mechanics.

[22]  Agnès Maurel Reflection and transmission by a slab with randomly distributed isotropic point scatterers , 2010, J. Comput. Appl. Math..

[23]  S. Maier Plasmonics: Fundamentals and Applications , 2007 .

[24]  Michael J. Ward,et al.  Strong Localized Perturbations of Eigenvalue Problems , 1993, SIAM J. Appl. Math..

[25]  Christophe Geuzaine,et al.  Modelling of electromagnetic waves in periodic media with finite elements , 2004 .

[26]  J. Conoir,et al.  Multiple Scattering: Interaction of Time-Harmonic Waves with N Obstacles , 2006 .

[27]  P. Waterman,et al.  MULTIPLE SCATTERING OF WAVES , 1961 .

[28]  Gennady Shvets,et al.  All-Si valley-Hall photonic topological insulator , 2016, 2016 Conference on Lasers and Electro-Optics (CLEO).

[29]  Sébastien Guenneau,et al.  Wave Mechanics in Media Pinned at Bravais Lattice Points , 2016, SIAM J. Appl. Math..

[30]  P. Mciver,et al.  Approximations to wave propagation through doubly-periodic arrays of scatterers , 2007 .

[31]  Michael J. Ward,et al.  Summing Logarithmic Expansions for Singularly Perturbed Eigenvalue Problems , 1993, SIAM J. Appl. Math..

[32]  Daniel Torrent,et al.  Elastic analog of graphene: Dirac cones and edge states for flexural waves in thin plates , 2013 .

[33]  M. van Dyke Perturbation methods in fluid mechanics /Annotated edition/ , 1975 .

[34]  F. G. Leppington,et al.  Singular perturbation methods in acoustics: diffraction by a plate of finite thickness , 1973, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[35]  Sébastien Guenneau,et al.  Homogenisation for elastic photonic crystals and dynamic anisotropy , 2014 .

[36]  Vimal Singh,et al.  Perturbation methods , 1991 .

[37]  Agnès Maurel,et al.  Waves around almost periodic arrangements of scatterers: Analysis of positional disorder , 2010 .

[38]  J. Pendry,et al.  Three-Dimensional Invisibility Cloak at Optical Wavelengths , 2010, Science.

[39]  K. Bertoldi,et al.  Topological Phononic Crystals with One-Way Elastic Edge Waves. , 2015, Physical review letters.

[40]  Thomas Taubner,et al.  Dielectric metamaterials based on electric and magnetic resonances of silicon carbide particles. , 2007, Physical review letters.

[41]  Paul A. Martin,et al.  Semi-Infinite Arrays of Isotropic Point Scatterers. A Unified Approach , 2004, SIAM J. Appl. Math..

[42]  M. Soljačić,et al.  Reflection-free one-way edge modes in a gyromagnetic photonic crystal. , 2007, Physical review letters.

[43]  Nicorovici,et al.  Photonic band gaps for arrays of perfectly conducting cylinders. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[44]  Steven G. Johnson,et al.  Photonic Crystals: Molding the Flow of Light , 1995 .

[45]  G. Batchelor,et al.  An Introduction to Fluid Dynamics , 1968 .

[46]  Stewart,et al.  Extremely low frequency plasmons in metallic mesostructures. , 1996, Physical review letters.

[47]  R. V. Craster,et al.  High-frequency homogenization for periodic media , 2010, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[48]  Paul A. Martin,et al.  On acoustic and electric Faraday cages , 2014, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[49]  David R. Smith,et al.  Metamaterials and Negative Refractive Index , 2004, Science.

[50]  Lixin Ran,et al.  Experimental observation of left-handed behavior in an array of standard dielectric resonators. , 2007, Physical review letters.

[51]  Sergei A. Tretyakov,et al.  Dispersion and Reflection Properties of Artificial Media Formed By Regular Lattices of Ideally Conducting Wires , 2002 .

[52]  E. Yablonovitch,et al.  Inhibited spontaneous emission in solid-state physics and electronics. , 1987, Physical review letters.

[53]  D. J. Colquitt,et al.  Parabolic metamaterials and Dirac bridges , 2015, 1512.01545.

[54]  Manzhu Ke,et al.  Valley vortex states in sonic crystals , 2016, 2016 Progress in Electromagnetic Research Symposium (PIERS).

[55]  Steven G. Johnson,et al.  All-angle negative refraction without negative effective index , 2002 .