On the Correct Extraction of Interface Trap Density of MOS Devices With High-Mobility Semiconductor Substrates

ldquoConventionalrdquo techniques and related capacitance-voltage characteristic interpretation were established to evaluate interface trap density on Si substrates. We show that blindly applying these techniques on alternative substrates can lead to incorrect conclusions. It is possible to both under- and overestimate the interface trap density by more than an order of magnitude. Pitfalls jeopardizing capacitance-and conductance-voltage characteristic interpretation for alternative semiconductor MOS are elaborated. We show how the conductance method, the most reliable and widely used interface trap density extraction method for Si, can be adapted and made reliable for alternative semiconductors while maintaining its simplicity.

[1]  H. Hasegawa,et al.  Electrical modeling of compound semiconductor interface for FET device assessment , 1980, IEEE Transactions on Electron Devices.

[2]  S. Selberherr,et al.  Theoretical Investigation Of Performance In Uniaxially- and Biaxially-Strained Si, SiGe and Ge Double-Gate p-MOSFETs , 2006, 2006 International Electron Devices Meeting.

[3]  E. H. Nicollian,et al.  Mos (Metal Oxide Semiconductor) Physics and Technology , 1982 .

[4]  H. Morkoç,et al.  GaAs metal insulator semiconductor capacitors and high transconductance metal insulator semiconductor field effect transistors , 1994 .

[5]  R. Chau,et al.  85nm gate length enhancement and depletion mode InSb quantum well transistors for ultra high speed and very low power digital logic applications , 2005, IEEE InternationalElectron Devices Meeting, 2005. IEDM Technical Digest..

[6]  G. Groeseneken,et al.  New interface state density extraction method applicable to peaked and high-density distributions for Ge MOSFET development , 2006, IEEE Electron Device Letters.

[7]  S. Koester,et al.  Temperature-Dependent Admittance Analysis of HfO2 Gate Dielectrics on Nitrogen- and Sulfur-Passivated Ge , 2006, 2006 International SiGe Technology and Device Meeting.

[8]  Marc Heyns,et al.  Optimisation of a thin epitaxial Si layer as Ge passivation layer to demonstrate deep sub-micron n- and p-FETs on Ge-On-Insulator substrates , 2005 .

[9]  C. O. Chui,et al.  High Mobility Materials and Novel Device Structures for High Performance Nanoscale MOSFETs , 2006, 2006 International Electron Devices Meeting.

[10]  Martin M. Frank,et al.  Hafnium oxide gate dielectrics on sulfur-passivated germanium , 2006 .

[11]  J. Kwo,et al.  Enhancement-mode p-channel GaAs MOSFETs on semi-insulating substrates , 1996, International Electron Devices Meeting. Technical Digest.

[12]  S. Koveshnikov,et al.  Self-Aligned n- and p-channel GaAs MOSFETs on Undoped and P-type Substrates Using HfO2 and Silicon Interface Passivation Layer , 2006, 2006 International Electron Devices Meeting.

[13]  A. Dimoulas,et al.  Intrinsic carrier effects in HfO2–Ge metal–insulator–semiconductor capacitors , 2005 .

[14]  E. K. Evangelou,et al.  Fermi-level pinning and charge neutrality level in germanium , 2006 .

[15]  H. Hasegawa,et al.  Anomalous frequency dispersion of m.o.s. capacitors formed on n-type GaAs by anodic oxidation , 1976 .

[16]  D. Kwong,et al.  The electrical properties of HfO/sub 2/ dielectric on germanium and the substrate doping effect , 2006, IEEE Transactions on Electron Devices.

[17]  H. Hasegawa,et al.  Control of compound semiconductor–insulator interfaces by an ultrathin molecular‐beam epitaxy Si layer , 1989 .

[18]  Shinichi Takagi,et al.  Role of germanium nitride interfacial layers in HfO2/germanium nitride/germanium metal-insulator-semiconductor structures , 2007 .

[19]  P. Ye,et al.  Capacitance-voltage studies on enhancement-mode InGaAs metal-oxide-semiconductor field-effect transistor using atomic-layer-deposited Al2O3 gate dielectric , 2006 .

[20]  P. Fejes,et al.  1-$\mu\hbox{m}$ Enhancement Mode GaAs N-Channel MOSFETs With Transconductance Exceeding 250 mS/mm , 2007, IEEE Electron Device Letters.

[21]  X. Garros,et al.  Germanium/HfO/sub 2//TiN gate stacks for advanced nodes: influence of surface preparation on MOS capacitor characteristics , 2005, Proceedings of 35th European Solid-State Device Research Conference, 2005. ESSDERC 2005..

[22]  Guido Groeseneken,et al.  Impact of weak Fermi-level pinning on the correct interpretation of III-V MOS C-V and G-V characteristics , 2007 .

[23]  Alexander A. Demkov,et al.  Materials Fundamentals of Gate Dielectrics , 2005 .

[24]  P. Ye,et al.  Minority-carrier characteristics of InGaAs metal-oxide-semiconductor structures using atomic-layer-deposited Al2O3 gate dielectric , 2006 .

[25]  B. Kaczer,et al.  Experimental analysis of a Ge-HfO/sub 2/-TaN gate stack with a large amount of interface states , 2005, Proceedings of the 2005 International Conference on Microelectronic Test Structures, 2005. ICMTS 2005..

[26]  K. Opsomer,et al.  High performance Ge pMOS devices using a Si-compatible process flow , 2006, 2006 International Electron Devices Meeting.

[27]  Chi On Chui,et al.  Nanoscale germanium MOS Dielectrics-part I: germanium oxynitrides , 2006, IEEE Transactions on Electron Devices.