Image Segmentation by MAP-ML Estimations

Image segmentation plays an important role in computer vision and image analysis. In this paper, image segmentation is formulated as a labeling problem under a probability maximization framework. To estimate the label configuration, an iterative optimization scheme is proposed to alternately carry out the maximum a posteriori (MAP) estimation and the maximum likelihood (ML) estimation. The MAP estimation problem is modeled with Markov random fields (MRFs) and a graph cut algorithm is used to find the solution to the MAP estimation. The ML estimation is achieved by computing the means of region features in a Gaussian model. Our algorithm can automatically segment an image into regions with relevant textures or colors without the need to know the number of regions in advance. Its results match image edges very well and are consistent with human perception. Comparing to six state-of-the-art algorithms, extensive experiments have shown that our algorithm performs the best.

[1]  Andrew Zisserman,et al.  OBJ CUT , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[2]  Shigeo Abe DrEng Pattern Classification , 2001, Springer London.

[3]  Andrew Zisserman,et al.  Incremental learning of object detectors using a visual shape alphabet , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[4]  Vladimir Kolmogorov,et al.  Spatially coherent clustering using graph cuts , 2004, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004..

[5]  John D. Lafferty,et al.  Inducing Features of Random Fields , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[6]  Song-Chun Zhu,et al.  Minimax Entropy Principle and Its Application to Texture Modeling , 1997, Neural Computation.

[7]  Luc Vincent,et al.  Watersheds in Digital Spaces: An Efficient Algorithm Based on Immersion Simulations , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[8]  Shimon Ullman,et al.  Learning to Segment , 2004, ECCV.

[9]  William A. Barrett,et al.  Interactive Segmentation with Intelligent Scissors , 1998, Graph. Model. Image Process..

[10]  David G. Stork,et al.  Pattern Classification (2nd ed.) , 1999 .

[11]  Joanna Isabelle Olszewska,et al.  Speeded Up Gradient Vector Flow B-Spline Active Contours for Robust and Real-Time Tracking , 2007, 2007 IEEE International Conference on Acoustics, Speech and Signal Processing - ICASSP '07.

[12]  Olga Veksler,et al.  Fast approximate energy minimization via graph cuts , 2001, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[13]  Zhuowen Tu,et al.  An integrated framework for image segmentation and perceptual grouping , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[14]  Richard M. Leahy,et al.  An Optimal Graph Theoretic Approach to Data Clustering: Theory and Its Application to Image Segmentation , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[15]  Dorin Comaniciu,et al.  Mean Shift: A Robust Approach Toward Feature Space Analysis , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[16]  Jerry L. Prince,et al.  Snakes, shapes, and gradient vector flow , 1998, IEEE Trans. Image Process..

[17]  R. M. Norton,et al.  The Double Exponential Distribution: Using Calculus to Find a Maximum Likelihood Estimator , 1984 .

[18]  Dorin Comaniciu,et al.  Mean shift analysis and applications , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[19]  Joachim M. Buhmann,et al.  Nonparametric Bayesian Image Segmentation , 2008, International Journal of Computer Vision.

[20]  Laurent D. Cohen,et al.  On active contour models and balloons , 1991, CVGIP Image Underst..

[21]  Xavier Cufí,et al.  Yet Another Survey on Image Segmentation: Region and Boundary Information Integration , 2002, ECCV.

[22]  Jerry L. Prince,et al.  A multi-compartment segmentation framework with homeomorphic level sets , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[23]  Allen Y. Yang,et al.  Unsupervised segmentation of natural images via lossy data compression , 2008, Comput. Vis. Image Underst..

[24]  Jitendra Malik,et al.  Blobworld: Image Segmentation Using Expectation-Maximization and Its Application to Image Querying , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[25]  Marie-Pierre Jolly,et al.  Interactive Graph Cuts for Optimal Boundary and Region Segmentation of Objects in N-D Images , 2001, ICCV.

[26]  Liangliang Cao,et al.  Iterative MAP and ML Estimations for Image Segmentation , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[27]  Martial Hebert,et al.  Toward Objective Evaluation of Image Segmentation Algorithms , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[28]  Wolfgang Förstner,et al.  A Framework for Low Level Feature Extraction , 1994, ECCV.

[29]  Marie-Pierre Jolly,et al.  Interactive graph cuts for optimal boundary & region segmentation of objects in N-D images , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[30]  P Perona,et al.  Preattentive texture discrimination with early vision mechanisms. , 1990, Journal of the Optical Society of America. A, Optics and image science.

[31]  Marina Meila,et al.  Comparing clusterings: an axiomatic view , 2005, ICML.

[32]  Tony Lindeberg,et al.  Direct computation of shape cues using scale-adapted spatial derivative operators , 1996, International Journal of Computer Vision.

[33]  Jitendra Malik,et al.  A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[34]  Andrew Blake,et al.  "GrabCut" , 2004, ACM Trans. Graph..

[35]  Jianbo Shi,et al.  Multiclass spectral clustering , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[36]  Vladimir Kolmogorov,et al.  What energy functions can be minimized via graph cuts? , 2002, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[37]  Harry Shum,et al.  Lazy snapping , 2004, ACM Trans. Graph..

[38]  Harry Shum,et al.  Image segmentation by data driven Markov chain Monte Carlo , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[39]  Demetri Terzopoulos,et al.  Deformable models in medical image analysis: a survey , 1996, Medical Image Anal..

[40]  Rachid Deriche,et al.  A Review of Statistical Approaches to Level Set Segmentation: Integrating Color, Texture, Motion and Shape , 2007, International Journal of Computer Vision.

[41]  Richard Szeliski,et al.  A Comparative Study of Energy Minimization Methods for Markov Random Fields , 2006, ECCV.

[42]  Demetri Terzopoulos,et al.  Snakes: Active contour models , 2004, International Journal of Computer Vision.

[43]  Jitendra Malik,et al.  Normalized cuts and image segmentation , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[44]  Christoph Schnörr,et al.  Natural Image Statistics for Natural Image Segmentation , 2005, International Journal of Computer Vision.

[45]  Andrew Zisserman,et al.  A Boundary-Fragment-Model for Object Detection , 2006, ECCV.