Parameter identification of chaotic systems by hybrid Nelder-Mead simplex search and differential evolution algorithm

Parameter identification of chaotic systems is an important issue in nonlinear science and has attracted increasing interest from a variety of research and application fields. Essentially, parameter identification can be formulated as a multi-dimensional optimization problem. By combining differential evolution (DE) and Nelder-Mead (NM) simplex search, an effective hybrid algorithm named NMDE is proposed in this paper. By suitably fusing the DE-based evolutionary search and NM simplex-based local search, exploration and exploitation abilities can be well balanced and satisfactory optimization performances can be achieved. The NMDE hybrid algorithm is applied to parameter identification of several typical chaotic systems. Numerical simulation and comparisons with some typical existing algorithms demonstrate the effectiveness and robustness of the proposed hybrid NMDE algorithm. Moreover, the effects of noise and population size on the performances of NMDE are investigated as well.

[1]  John A. Nelder,et al.  A Simplex Method for Function Minimization , 1965, Comput. J..

[2]  M. M. El-Dessoky,et al.  Global synchronization criterion and adaptive synchronization for new chaotic system , 2005 .

[3]  A. Roy Chowdhury,et al.  Parameter estimation of a delay dynamical system using synchronization in presence of noise , 2007 .

[4]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[5]  Andries Petrus Engelbrecht,et al.  Bare bones differential evolution , 2009, Eur. J. Oper. Res..

[6]  India,et al.  Use of synchronization and adaptive control in parameter estimation from a time series , 1998, chao-dyn/9804005.

[7]  R. Storn,et al.  Differential Evolution: A Practical Approach to Global Optimization (Natural Computing Series) , 2005 .

[8]  J. Yan,et al.  Adaptive chattering free variable structure control for a class of chaotic systems with unknown bounded uncertainties , 2005 .

[9]  Patrick Ruch,et al.  Model Selection for Support Vector Classifiers via Direct Simplex Search , 2005, FLAIRS Conference.

[10]  Jeffrey C. Lagarias,et al.  Convergence Properties of the Nelder-Mead Simplex Method in Low Dimensions , 1998, SIAM J. Optim..

[11]  Guanrong Chen,et al.  On robust control of uncertain chaotic systems: a sliding-mode synthesis via chaotic optimization , 2003 .

[12]  Saku Kukkonen,et al.  Real-parameter optimization with differential evolution , 2005, 2005 IEEE Congress on Evolutionary Computation.

[13]  Tomasz Kapitaniak,et al.  Continuous control and synchronization in chaotic systems , 1995 .

[14]  Rahul Konnur,et al.  Estimation of all model parameters of chaotic systems from discrete scalar time series measurements , 2005 .

[15]  Bo Peng,et al.  Differential evolution algorithm-based parameter estimation for chaotic systems , 2009 .

[16]  Tapabrata Ray,et al.  A Hybrid Evolutionary Algorithm With Simplex Local Search , 2007, 2007 IEEE Congress on Evolutionary Computation.

[17]  Xiangdong Wang,et al.  Parameters identification of chaotic systems via chaotic ant swarm , 2006 .

[18]  Hitoshi Iba,et al.  Accelerating Differential Evolution Using an Adaptive Local Search , 2008, IEEE Transactions on Evolutionary Computation.

[19]  S. S. Yang,et al.  Generalized Synchronization in Chaotic Systems , 1998 .

[20]  Shu-Kai S. Fan,et al.  A hybrid simplex search and particle swarm optimization for unconstrained optimization , 2007, Eur. J. Oper. Res..

[21]  Jun-Juh Yan,et al.  Parameter identification of chaotic systems using evolutionary programming approach , 2008, Expert Syst. Appl..

[22]  M.M.A. Salama,et al.  Opposition-Based Differential Evolution , 2008, IEEE Transactions on Evolutionary Computation.

[23]  Ling Wang,et al.  Parameter estimation for chaotic systems by particle swarm optimization , 2007 .

[24]  Ling Wang,et al.  A hybrid Differential Evolution with double populations for constrained optimization , 2008, 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence).