of the Bernoulli Society for Mathematical Statistics and Probability Volume Twenty Four Number Four Part B November 2018 ISSN : 1350-7265

[1]  G'abor Lugosi,et al.  Detecting Markov random fields hidden in white noise , 2015, Bernoulli.

[2]  P. Straka,et al.  Fokker--Planck and Kolmogorov Backward Equations for Continuous Time Random Walk scaling limits , 2015, 1501.00533.

[3]  G. Lugosi,et al.  Detecting Positive Correlations in a Multivariate Sample , 2012, 1202.5536.

[4]  F. John Extremum Problems with Inequalities as Subsidiary Conditions , 2014 .

[5]  Mark M Meerschaert,et al.  FRACTIONAL PEARSON DIFFUSIONS. , 2013, Journal of mathematical analysis and applications.

[6]  T. Cai,et al.  Sparse PCA: Optimal rates and adaptive estimation , 2012, 1211.1309.

[7]  T. Cai,et al.  Optimal hypothesis testing for high dimensional covariance matrices , 2012, 1205.4219.

[8]  P. Rigollet,et al.  Optimal detection of sparse principal components in high dimension , 2012, 1202.5070.

[9]  G. Lugosi,et al.  Detection of correlations , 2011, 1106.1193.

[10]  N. Leonenko,et al.  On spectral analysis of heavy-tailed Kolmogorov-Pearson diffusions , 2012 .

[11]  E. Candès,et al.  Detection of an anomalous cluster in a network , 2010, 1001.3209.

[12]  Bruce Ian Henry,et al.  Lagging and leading coupled continuous time random walks, renewal times and their joint limits , 2010, 1005.2369.

[13]  L. Addario-Berry,et al.  On Combinatorial Testing Problems 1 , 2010 .

[14]  Efstathios Paparoditis,et al.  Testing temporal constancy of the spectral structure of a time series , 2009, 1001.2122.

[15]  N. Leonenko,et al.  Series Expansions for the First Passage Distribution of Wong–Pearson Jump-Diffusions , 2009 .

[16]  Mark M. Meerschaert,et al.  Correlated continuous time random walks , 2008, 0809.1612.

[17]  Guido Germano,et al.  Stochastic calculus for uncoupled continuous-time random walks. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[18]  Ananthram Swami,et al.  Detection of Gauss–Markov Random Fields With Nearest-Neighbor Dependency , 2007, IEEE Transactions on Information Theory.

[19]  Xiaoming Huo Detectability of Convex-Shaped Objects in Digital Images, Its Fundamental Limit and Multiscale Analysis , 2009 .

[20]  Mark M. Meerschaert,et al.  Triangular array limits for continuous time random walks , 2008 .

[21]  Ajay Kumar,et al.  Computer-Vision-Based Fabric Defect Detection: A Survey , 2008, IEEE Transactions on Industrial Electronics.

[22]  E. Candès,et al.  Searching for a trail of evidence in a maze , 2007, math/0701668.

[23]  Vassili N. Kolokoltsov,et al.  Generalized Continuous-Time Random Walks (CTRW), Subordination by Hitting Times and Fractional Dynamics , 2007, 0706.1928.

[24]  J. Steinebach,et al.  On the detection of changes in autoregressive time series I. Asymptotics , 2007 .

[25]  Gennady Samorodnitsky,et al.  Long Range Dependence , 2007, Found. Trends Stoch. Syst..

[26]  M. Meerschaert,et al.  Coupled continuous time random walks in finance , 2006, physics/0608281.

[27]  Larry S. Davis,et al.  Real-time foreground-background segmentation using codebook model , 2005, Real Time Imaging.

[28]  S. Boucheron,et al.  Moment inequalities for functions of independent random variables , 2005, math/0503651.

[29]  Xiaoming Huo,et al.  Near-optimal detection of geometric objects by fast multiscale methods , 2005, IEEE Transactions on Information Theory.

[30]  Mark M. Meerschaert,et al.  Limit theorems for continuous-time random walks with infinite mean waiting times , 2004, Journal of Applied Probability.

[31]  D. Donoho,et al.  Higher criticism for detecting sparse heterogeneous mixtures , 2004, math/0410072.

[32]  Pascal Fua,et al.  Texture Boundary Detection for Real-Time Tracking , 2004, ECCV.

[33]  Jitendra Malik,et al.  Contour and Texture Analysis for Image Segmentation , 2001, International Journal of Computer Vision.

[34]  Eero P. Simoncelli,et al.  A Parametric Texture Model Based on Joint Statistics of Complex Wavelet Coefficients , 2000, International Journal of Computer Vision.

[35]  Andrew Zisserman,et al.  A Statistical Approach to Texture Classification from Single Images , 2004, International Journal of Computer Vision.

[36]  L. Moisan,et al.  Maximal meaningful events and applications to image analysis , 2003 .

[37]  Ronen Basri,et al.  Texture segmentation by multiscale aggregation of filter responses and shape elements , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[38]  Dimitris A. Karras,et al.  Computer-aided tumor detection in endoscopic video using color wavelet features , 2003, IEEE Transactions on Information Technology in Biomedicine.

[39]  Martial Hebert,et al.  Man-made structure detection in natural images using a causal multiscale random field , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[40]  Charles C. Taylor,et al.  Bayesian texture segmentation of weed and crop images using reversible jump Markov chain Monte Carlo methods , 2003 .

[41]  Y. Baraud Non-asymptotic minimax rates of testing in signal detection , 2002 .

[42]  B. Clymer,et al.  Texture detection of simulated microcalcification susceptibility effects in magnetic resonance imaging of breasts , 2001, Journal of magnetic resonance imaging : JMRI.

[43]  S. Szarek,et al.  Chapter 8 - Local Operator Theory, Random Matrices and Banach Spaces , 2001 .

[44]  Roman M. Palenichka,et al.  Detection of local objects in images with textured background by using multiscale relevance function , 2000, SPIE Optics + Photonics.

[45]  Marc Lavielle,et al.  The Multiple Change-Points Problem for the Spectral Distribution , 2000 .

[46]  Nicolai Petkov,et al.  Comparison of texture features based on Gabor filters , 1999, Proceedings 10th International Conference on Image Analysis and Processing.

[47]  Joachim M. Buhmann,et al.  Unsupervised Texture Segmentation in a Deterministic Annealing Framework , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[48]  Song-Chun Zhu Filters, Random Fields and Maximum Entropy (FRAME): Towards a Unified Theory for Texture Modeling , 1998 .

[49]  M. Jacobsen Laplace and the origin of the Ornstein-Uhlenbeck process , 1996 .

[50]  B. S. Manjunath,et al.  Texture Features for Browsing and Retrieval of Image Data , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[51]  Charles Kervrann,et al.  A Markov random field model-based approach to unsupervised texture segmentation using local and global spatial statistics , 1995, IEEE Trans. Image Process..

[52]  Caitlin E. Buck,et al.  THE BAYESIAN APPROACH TO THE INTERPRETATION OF ARCHAEOLOGICAL DATA , 1995 .

[53]  Dawei Huang,et al.  Testing for a Change in the Parameter Values and Order of an Autoregressive Model , 1995 .

[54]  Lajos Horváth,et al.  Change in autoregressive processes , 1993 .

[55]  Liudas Giraitis,et al.  Testing and estimating in the change-point problem of the spectral function , 1992 .

[56]  Anil K. Jain,et al.  Unsupervised texture segmentation using Gabor filters , 1990, 1990 IEEE International Conference on Systems, Man, and Cybernetics Conference Proceedings.

[57]  D. Picard Testing and estimating change-points in time series , 1985, Advances in Applied Probability.

[58]  Rama Chellappa,et al.  Classification of textures using Gaussian Markov random fields , 1985, IEEE Trans. Acoust. Speech Signal Process..

[59]  Anil K. Jain,et al.  Markov Random Field Texture Models , 1983, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[60]  Yuji Kasahara,et al.  Limit Theorems of Occupation Times for Markov Processes , 1976 .

[61]  J. Besag Statistical Analysis of Non-Lattice Data , 1975 .

[62]  M. B. Priestley,et al.  A Test for Non‐Stationarity of Time‐Series , 1969 .