Ternary rare earth sulfide CaCe2S4: Synthesis and characterization of stability, structure, and photoelectrochemical properties in aqueous media

[1]  F. Körmann,et al.  Operando Phonon Studies of the Protonation Mechanism in Highly Active Hydrogen Evolution Reaction Pentlandite Catalysts. , 2017, Journal of the American Chemical Society.

[2]  M. Chan,et al.  Edge-terminated molybdenum disulfide with a 9.4-Å interlayer spacing for electrochemical hydrogen production , 2015, Nature Communications.

[3]  B. Xiang,et al.  Single-Crystal Atomic-Layered Molybdenum Disulfide Nanobelts with High Surface Activity. , 2015, ACS nano.

[4]  Ib Chorkendorff,et al.  Recent Development in Hydrogen Evolution Reaction Catalysts and Their Practical Implementation. , 2015, The journal of physical chemistry letters.

[5]  F. Toma,et al.  Indirect Bandgap and Optical Properties of Monoclinic Bismuth Vanadate , 2015 .

[6]  Mustapha Sadki,et al.  The HighScore suite , 2014, Powder Diffraction.

[7]  Song Jin,et al.  Earth-abundant inorganic electrocatalysts and their nanostructures for energy conversion applications , 2014 .

[8]  J. Coleman,et al.  Liquid Exfoliation of Layered Materials , 2013, Science.

[9]  Liejin Guo,et al.  Metal sulphide semiconductors for photocatalytic hydrogen production , 2013 .

[10]  Zhiyuan Zeng,et al.  Metal dichalcogenide nanosheets: preparation, properties and applications. , 2013, Chemical Society reviews.

[11]  G. Eda,et al.  Enhanced catalytic activity in strained chemically exfoliated WS₂ nanosheets for hydrogen evolution. , 2012, Nature materials.

[12]  B. Ohtani Photocatalysis A to Z—What we know and what we do not know in a scientific sense , 2010 .

[13]  M. Bouroushian Electrochemistry of Metal Chalcogenides , 2010 .

[14]  H. Schock,et al.  On the Sn loss from thin films of the material system Cu-Zn-Sn-S in high vacuum , 2010 .

[15]  K. Fujiwara,et al.  Relationship between grain boundary structures in Si multicrystals and generation of dislocations during crystal growth , 2010 .

[16]  Krishnan Rajeshwar,et al.  Heterogeneous photocatalytic treatment of organic dyes in air and aqueous media , 2008 .

[17]  A. Georges,et al.  Structure and optical properties of a - and ? -cerium sesquisulfide , 2008 .

[18]  Stuart Licht,et al.  Solar hydrogen generation : toward a renewable energy future , 2008 .

[19]  A. Murphy Band-gap determination from diffuse reflectance measurements of semiconductor films, and application to photoelectrochemical water-splitting , 2007 .

[20]  R. Meltzer,et al.  Ce3+ energy levels relative to the band structure in CaS: evidence from photoionization and electron trapping , 2002 .

[21]  D. Lincot,et al.  The deposition of Group 6A-derived inorganic semiconductor films as studied by quartz crystal microgravimetry , 2000 .

[22]  A. Demourgues,et al.  Preparation and characterization of alkali- and alkaline earth-based rare earth sulfides , 1998 .

[23]  Structural and Luminescence Properties of Ca1−xLaxS (x=0−0.3) , 1997 .

[24]  V. Zhukov,et al.  Band Electronic Structure Study of Some Doped and Undoped γ-Ln2S3(Ln=La, Ce, Pr, and Nd) Rare Earth Sulfides through LMTO-TB Calculations , 1997 .

[25]  Wimmer,et al.  Color of pure and alkali-doped cerium sulfide: A local-density-functional study. , 1996, Physical review. B, Condensed matter.

[26]  R. Brec,et al.  Comparative study of some rare earth sulfides: doped γ-[A]M2S3 (M = La, Ce and Nd, A = Na, K and Ca) and undoped γ-M2S3 (M = La, Ce and Nd) , 1995 .

[27]  D. Meissner,et al.  Photoelectrochemistry of cadmium sulfide. 1. Reanalysis of photocorrosion and flat-band potential , 1988 .

[28]  W. David Powder diffraction peak shapes. Parameterization of the pseudo-Voigt as a Voigt function , 1986 .

[29]  Krishnan Rajeshwar,et al.  Materials aspects of photoelectrochemical energy conversion , 1985 .

[30]  F. A. Kröger Cathodic Deposition and Characterization of Metallic or Semiconducting Binary Alloys or Compounds , 1978 .

[31]  Allen J. Bard,et al.  Thermodynamic Potential for the Anodic Dissolution of n‐Type Semiconductors A Crucial Factor Controlling Durability and Efficiency in Photoelectrochemical Cells and an Important Criterion in the Selection of New Electrode/Electrolyte Systems , 1977 .

[32]  P. Kohl,et al.  Semiconductor electrodes. 13. Characterization and behavior of n-type zinc oxide, cadmium sulfide, and gallium phosphide electrodes in acetonitrile solutions , 1977 .

[33]  H. Gerischer,et al.  Photodecomposition of Semiconductors – A Thermodynamic Approach. A Citation-Classic Commentary on the Stability of semiconductor electrodes against photodecomposition , 1977 .

[34]  Michael A. Butler,et al.  Photoelectrolysis and physical properties of the semiconducting electrode WO2 , 1977 .

[35]  M. Wrighton,et al.  Study of n-type semiconducting cadmium chalcogenide-based photoelectrochemical cells employing polychalcogenide electrolytes , 1977 .

[36]  W. M. Yim,et al.  Preparation and Properties of II ‐ Ln2 ‐ S 4 Ternary Sulfides , 1973 .

[37]  Wolfgang W. Gärtner,et al.  Depletion-Layer Photoeffects in Semiconductors , 1959 .

[38]  G. Caglioti,et al.  Choice of collimators for a crystal spectrometer for neutron diffraction , 1958 .