暂无分享,去创建一个
Bernd Bischl | Philipp Probst | Janek Thomas | Daniel Kühn | Daniela Kühn | Philipp Probst | B. Bischl | Janek Thomas
[1] Bernd Bischl,et al. OpenML: An R package to connect to the machine learning platform OpenML , 2017, Comput. Stat..
[2] Kurt Hornik,et al. Misc Functions of the Department of Statistics, ProbabilityTheory Group (Formerly: E1071), TU Wien , 2015 .
[3] Tony R. Martinez,et al. An Easy to Use Repository for Comparing and Improving Machine Learning Algorithm Usage , 2014, MetaSel@ECAI.
[4] Bernd Bischl,et al. OpenML Benchmarking Suites and the OpenML100 , 2017, ArXiv.
[5] Frank Hutter,et al. Initializing Bayesian Hyperparameter Optimization via Meta-Learning , 2015, AAAI.
[6] Trevor Hastie,et al. Regularization Paths for Generalized Linear Models via Coordinate Descent. , 2010, Journal of statistical software.
[7] Fei-Fei Li,et al. ImageNet: A large-scale hierarchical image database , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.
[8] Luís Torgo,et al. OpenML: networked science in machine learning , 2014, SKDD.
[9] Bernd Bischl,et al. batchtools: Tools for R to work on batch systems , 2017, J. Open Source Softw..
[10] Bernd Bischl,et al. mlr: Machine Learning in R , 2016, J. Mach. Learn. Res..
[11] Bernd Bischl,et al. Tunability: Importance of Hyperparameters of Machine Learning Algorithms , 2018, J. Mach. Learn. Res..
[12] Bart De Moor,et al. Hyperparameter Search in Machine Learning , 2015, ArXiv.
[13] Andreas Ziegler,et al. ranger: A Fast Implementation of Random Forests for High Dimensional Data in C++ and R , 2015, 1508.04409.
[14] Tianqi Chen,et al. XGBoost: A Scalable Tree Boosting System , 2016, KDD.
[15] Jan N. van Rijn,et al. Hyperparameter Importance Across Datasets , 2017, KDD.
[16] Bernd Bischl,et al. OpenML Benchmarking Suites , 2017, 1708.03731.