Detection of large-scale intrinsic ellipticity—density correlation from the Sloan Digital Sky Survey and implications for weak lensing surveys

The power spectrum of weak lensing shear caused by large-scale structure is an emerging tool for precision cosmology, in particular for measuring the effects of dark energy on the growth of structure at low redshift. One potential source of systematic error is intrinsic alignments of ellipticities of neighbouring galaxies [the intrinsic ellipticity-intrinsic ellipticity (II) correlation] that could mimic the correlations due to lensing. A related possibility pointed out by Hirata & Seljak is correlation between the intrinsic ellipticities of galaxies and the density field responsible for gravitational lensing shear [the gravitational shear-intrinsic ellipticity (GI) correlation]. We present constraints on both the II and GI correlations using 265 908 spectroscopic galaxies from the Sloan Digital Sky Survey (SDSS) and using galaxies as tracers of the mass in the case of the GI analysis. The availability of redshifts in the SDSS allows us to select galaxies at small radial separations, which both reduces noise in the intrinsic alignment measurement and suppresses galaxy-galaxy lensing (which otherwise swamps the GI correlation). While we find no detection of the II correlation, our results are none the less statistically consistent with recent detections found using the SuperCOSMOS survey. Extrapolation of these limits to cosmic shear surveys at z ∼ 1 suggests that the II correlation is unlikely to have been a significant source of error for current measurements of σ 8 with ∼ 10 per cent accuracy, but may still be an issue for future surveys with projected statistical errors below the 1 per cent level unless eliminated using photometric redshifts. In contrast, we have a clear detection of GI correlation in galaxies brighter than L. that persists to the largest scales probed (60 h -1 Mpc) and with a sign predicted by theoretical models. This correlation could cause the existing lensing surveys at z ∼ 1 to underestimate the linear amplitude of fluctuations by as much as 20 per cent depending on the source sample used, while for surveys at z ∼ 0.5 the underestimation may reach 30 per cent. The GI contamination is dominated by the brightest galaxies, possibly due to the alignment of brightest cluster galaxies (BCGs) with the cluster ellipticity due to anisotropic infall along filaments, although other sources of contamination cannot be excluded at this point. We propose that cosmic shear surveys should consider rejection of BCGs from their source catalogues as a test for GI contamination. Future high-precision weak lensing surveys must develop methods to search for and remove this contamination if they are to achieve their promise.

[1]  Cambridge,et al.  Detection of weak gravitational lensing by large-scale structure , 2000 .

[2]  S. White,et al.  Anisotropies in the Distribution of Satellite Galaxies , 1996, astro-ph/9611207.

[3]  Dealing with systematics in cosmic shear studies: New results from the VIRMOS-Descart survey , 2004, astro-ph/0406468.

[4]  Uros Seljak,et al.  Reconstruction of lensing from the cosmic microwave background polarization , 2003 .

[5]  Edinburgh,et al.  Measurement of intrinsic alignments in galaxy ellipticities , 2000, astro-ph/0009499.

[6]  et al,et al.  Sloan Digital Sky Survey Imaging of Low Galactic Latitude Fields: Technical Summary and Data Release , 2004, astro-ph/0409700.

[7]  Detection of Cosmic Shear with the [ITAL]Hubble Space Telescope[/ITAL] Survey Strip , 2001 .

[8]  Mamoru Doi,et al.  Estimating Fixed-Frame Galaxy Magnitudes in the Sloan Digital Sky Survey , 2002, astro-ph/0205243.

[9]  M. West,et al.  Alignments of the Dominant Galaxies in Poor Clusters , 1999, astro-ph/9901418.

[10]  M. West On the morphology of superclusters , 1989 .

[11]  R. Nichol,et al.  A Merged Catalog of Clusters of Galaxies from Early Sloan Digital Sky Survey Data , 2003, astro-ph/0305202.

[12]  Wayne Hu Dark Synergy: Gravitational Lensing and the CMB , 2001 .

[13]  The origin of brightest cluster galaxies. , 1997, astro-ph/9709102.

[14]  M. Steinmetz,et al.  Tidal Torques and the Orientation of Nearby Disk Galaxies , 2004, astro-ph/0405429.

[15]  Michael R. Blanton,et al.  Systematic errors in weak lensing: application to SDSS galaxy-galaxy weak lensing , 2005 .

[16]  et al,et al.  The Sloan Digital Sky Survey Photometric Camera , 1998, astro-ph/9809085.

[17]  Peter Schneider,et al.  Suppressing the contribution of intrinsic galaxy alignments to the shear two-point correlation function , 2002, astro-ph/0208256.

[18]  A. Klypin,et al.  The Anisotropic Distribution of Galactic Satellites , 2005, astro-ph/0502496.

[19]  J. Gunn,et al.  A Photometricity and Extinction Monitor at the Apache Point Observatory , 2001, astro-ph/0106511.

[20]  John E. Davis,et al.  Sloan Digital Sky Survey: Early Data Release , 2002 .

[21]  A. J. Connolly,et al.  Reconstructing Galaxy Spectral Energy Distributions from Broadband Photometry , 1999, astro-ph/9910389.

[22]  Uros Seljak,et al.  Shear calibration biases in weak-lensing surveys , 2003, astro-ph/0301054.

[23]  M. White Baryons and weak lensing power spectra , 2004, astro-ph/0405593.

[24]  Bhasker K. Moorthy,et al.  The First Data Release of the Sloan Digital Sky Survey , 2003, astro-ph/0305492.

[25]  G. M. Bernstein,et al.  Dark Energy Constraints from Weak-Lensing Cross-Correlation Cosmography , 2003, astro-ph/0309332.

[26]  Yannick Mellier,et al.  How accurately can we measure weak gravitational shear , 2001 .

[27]  J. A. Smith,et al.  SDSS data management and photometric quality assessment , 2004 .

[28]  V. Narayanan,et al.  Spectroscopic Target Selection for the Sloan Digital Sky Survey: The Luminous Red Galaxy Sample , 2001, astro-ph/0108153.

[29]  A. Connolly,et al.  The Galaxy-Mass Correlation Function Measured from Weak Lensing in the Sloan Digital Sky Survey , 2003, astro-ph/0312036.

[30]  H. Payne,et al.  Astronomical Data Analysis Software and Systems X , 2001 .

[31]  The distribution of satellite galaxies: the great pancake , 2005, astro-ph/0503400.

[32]  R. Nichol,et al.  The Galaxy Luminosity Function and Luminosity Density at Redshift z = 0.1 , 2002, astro-ph/0210215.

[33]  SECOND ORDER CORRECTIONS TO WEAK LENSING BY LARGE-SCALE STRUCTURE , 2002, astro-ph/0202411.

[34]  SDSS galaxy bias from halo mass-bias relation and its cosmological implications , 2004, astro-ph/0406594.

[35]  Y. P. Jing Intrinsic correlation of halo ellipticity and its implications for large-scale weak lensing surveys , 2002 .

[36]  M. Bartelmann,et al.  Weak gravitational lensing , 2016, Scholarpedia.

[37]  M. Kamionkowski,et al.  Cosmic Shear of the Microwave Background: The Curl Diagnostic , 2005, astro-ph/0503002.

[38]  P. Hopkins,et al.  Cluster Alignments and Ellipticities in ΛCDM Cosmology , 2004, astro-ph/0409652.

[39]  Y. Mellier Probing the Universe with Weak Lensing , 1998, astro-ph/9812172.

[40]  J. Kuhn,et al.  Radial Alignment of Cluster Galaxies , 2004, astro-ph/0411710.

[41]  Y. Mellier,et al.  Astronomy & Astrophysics manuscript no. (will be inserted by hand later) Likelihood Analysis of Cosmic Shear on Simulated and VIRMOS-DESCART Data ⋆ , 2002 .

[42]  Christian Wolf,et al.  Weak lensing with COMBO-17: Estimation and removal of intrinsic alignments , 2004 .

[43]  P. Schneider,et al.  B-modes in cosmic shear from source redshift clustering , 2002 .

[44]  Intrinsic correlation of galaxy shapes: implications for weak lensing measurements , 2000, astro-ph/0005269.

[45]  Neutrino mass and dark energy from weak lensing. , 2002, Physical review letters.

[46]  Ue-Li Pen,et al.  Spin-induced Galaxy Alignments and Their Implications for Weak-Lensing Measurements , 2000, astro-ph/0009052.

[47]  R. Nichol,et al.  Tracing Cosmic Evolution with Galaxy Clusters , 2002 .

[48]  G. Bernstein,et al.  Weak-Lensing Results from the 75 Square Degree Cerro Tololo Inter-American Observatory Survey , 2003 .

[49]  Lindsay King Cosmic shear as a tool for precision cosmology: Minimising intrinsic galaxy alignment-lensing interference , 2005 .

[50]  A. Réfrégier Weak Gravitational Lensing by Large-Scale Structure , 2003, astro-ph/0307212.

[51]  Probing decisive answers to dark energy questions from cosmic complementarity and lensing tomography , 2005, astro-ph/0501594.

[52]  U. Pen,et al.  Detection of Galaxy Spin Alignments in the Point Source Catalog Redshift Survey Shear Field , 2002 .

[53]  Roger D. Blandford,et al.  Intrinsic and extrinsic galaxy alignment , 2000, astro-ph/0005470.

[54]  Walter A. Siegmund,et al.  The Second Data Release of the Sloan Digital Sky Survey , 2004 .

[55]  D. Schlegel,et al.  Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds , 1998 .

[56]  M. Fukugita,et al.  The Sloan Digital Sky Survey Photometric System , 1996 .

[57]  H. Macgillivray,et al.  Orientations of galaxies in the Local Supercluster , 1982 .

[58]  Alan Uomoto,et al.  The [CLC][ITAL]u[/ITAL][/CLC][arcmin]′[CLC][ITAL]g[/ITAL][/CLC][arcmin]′[CLC][ITAL]r[/ITAL][/CLC][arcmin]′[CLC][ITAL]i[/ITAL][/CLC][arcmin]′[CLC][ITAL]z[/ITAL][/CLC][arcmin]′ Standard-Star System , 2002 .

[59]  T. Brainerd Anisotropic Distribution of SDSS Satellite Galaxies: Planar (Not Polar) Alignment , 2004, astro-ph/0408559.

[60]  R. Nichol,et al.  The Fourth Data Release of the Sloan Digital Sky Survey , 2005 .

[61]  Carlton M. Baugh,et al.  The three-dimensional power spectrum measured from the APM Galaxy Survey – I. Use of the angular correlation function , 1993 .

[62]  Joint cosmological parameters forecast from CFHTLS-cosmic shear and CMB data , 2004, astro-ph/0404317.

[63]  A. N. Argue,et al.  Apparent associations between bright galaxies and compact galaxies , 1978 .

[64]  R. Wechsler,et al.  Modeling Galaxy-mass Correlations in Dissipationless Simulations , 2022 .

[65]  Robert C. Nichol,et al.  The Cut-and-Enhance Method: Selecting Clusters of Galaxies from the Sloan Digital Sky Survey Commissioning Data , 2001 .

[66]  P. Hall,et al.  A Measurement of Weak Lensing by Large-Scale Structure in Red-Sequence Cluster Survey Fields , 2002, astro-ph/0202285.

[67]  Dynamical dark energy: Current constraints and forecasts , 2004, astro-ph/0411803.

[68]  R. Croft,et al.  Weak-Lensing Surveys and the Intrinsic Correlation of Galaxy Ellipticities , 2000, astro-ph/0005384.

[69]  D. Huterer,et al.  Weak lensing and dark energy , 2001, astro-ph/0106399.

[70]  R. Lupton,et al.  Astrometric Calibration of the Sloan Digital Sky Survey , 2002, astro-ph/0211375.

[72]  D. Madgwick,et al.  The 2dF Galaxy Redshift Survey: The bJ-band galaxy luminosity function and survey selection function , 2001, astro-ph/0111011.

[73]  H. Hoekstra,et al.  Weak Lensing Analysis of Cl 1358+62 Using Hubble Space Telescope Observations , 1998 .

[74]  Properties of Galaxy Dark Matter Halos from Weak Lensing , 2003, astro-ph/0306515.

[75]  Yong Song Looking for an extra dimension with tomographic cosmic shear , 2004, astro-ph/0407489.

[76]  The principal axis of the virgo cluster , 2000, astro-ph/0008470.

[77]  J. Brinkmann,et al.  New York University Value-Added Galaxy Catalog: A Galaxy Catalog Based on New Public Surveys , 2005 .

[78]  F. M. Maley,et al.  An Efficient Targeting Strategy for Multiobject Spectrograph Surveys: the Sloan Digital Sky Survey “Tiling” Algorithm , 2001, astro-ph/0105535.

[79]  V. Narayanan,et al.  Spectroscopic Target Selection in the Sloan Digital Sky Survey: The Main Galaxy Sample , 2002, astro-ph/0206225.

[80]  J. Miralda-Escudé The correlation function of galaxy ellipticities produced by gravitational lensing , 1991 .

[81]  A. Szalay,et al.  Bias and variance of angular correlation functions , 1993 .

[82]  R. Nichol,et al.  The Three-Dimensional Power Spectrum of Galaxies from the Sloan Digital Sky Survey , 2003, astro-ph/0310725.

[83]  D. P. Schneider,et al.  The Luminosity and Color Dependence of the Galaxy Correlation Function , 2005 .

[84]  Virial masses of galactic haloes from galaxy–galaxy lensing: theoretical modelling and application to Sloan Digital Sky Survey data , 2002, astro-ph/0201448.

[85]  Martin White,et al.  Large-Scale Systematic Signals in Weak Lensing Surveys , 2004 .

[86]  Shape Alignments of Satellite Galaxies , 2002, astro-ph/0205506.

[87]  S. Dye,et al.  The shear power spectrum from the COMBO-17 survey , 2003 .

[88]  Lee,et al.  Cosmic Shear from Galaxy Spins. , 2000, The Astrophysical journal.

[89]  Alexander S. Szalay,et al.  Galaxy–galaxy weak lensing in the Sloan Digital Sky Survey: intrinsic alignments and shear calibration errors , 2004 .

[90]  E. al.,et al.  The Sloan Digital Sky Survey: Technical summary , 2000, astro-ph/0006396.

[91]  Nick Kaiser A New Shear Estimator for Weak-Lensing Observations , 2000 .

[92]  Aniruddha R. Thakar,et al.  The Third Data Release of the Sloan Digital Sky Survey , 2004 .

[93]  G. Bruzual,et al.  Stellar population synthesis at the resolution of 2003 , 2003, astro-ph/0309134.

[94]  Catherine Heymans,et al.  Weak gravitational lensing: reducing the contamination by intrinsic alignments , 2002, astro-ph/0208220.

[95]  M. SubbaRao,et al.  Spectroscopic Target Selection in the Sloan Digital Sky Survey: The Quasar Sample , 2002, astro-ph/0202251.

[96]  U. Seljak,et al.  Virial masses of galactic halos from galaxy-galaxy lensing : theoretical modeling and application to SDSS , 2002 .

[97]  Constraining dark energy evolution with gravitational lensing by large scale structures , 2003, astro-ph/0306033.

[98]  Weak lensing and CMB: Parameter forecasts including a running spectral index , 2003, astro-ph/0308446.

[99]  P. Peebles,et al.  Distribution of observed orientations of galaxies. , 1975 .

[100]  Cosmological parameter analysis including SDSS Lyα forest and galaxy bias: Constraints on the primordial spectrum of fluctuations, neutrino mass, and dark energy , 2004, astro-ph/0407372.

[101]  L. J. Greenhill,et al.  Galaxy evolution, cosmology and dark energy with the Square Kilometer Array , 2004 .

[102]  T. Broadhurst,et al.  A Method for Weak Lensing Observations , 1994, astro-ph/9411005.

[103]  Ue-Li Pen,et al.  Tentative Detection of Galaxy Spin Correlations in the Tully Catalog , 2000, astro-ph/0006118.

[104]  Are great disks defined by satellite galaxies in Milky-Way type halos rare in ΛCDM? , 2005, astro-ph/0501333.

[105]  M. Gladders,et al.  A New Method For Galaxy Cluster Detection. I. The Algorithm , 2000, astro-ph/0004092.

[106]  G. M. Bernstein,et al.  Shapes and Shears, Stars and Smears: Optimal Measurements for Weak Lensing , 2001 .

[107]  Christopher M. Hirata,et al.  Intrinsic alignment-lensing interference as a contaminant of cosmic shear , 2004, astro-ph/0406275.