Hahn’s Über die Nichtarchimedischen Grössensysteme and the Development of the Modern Theory of Magnitudes and Numbers to Measure Them
暂无分享,去创建一个
[1] P. Bois-Reymond. Ueber die Paradoxen des Infinitärcalcüls , 1877 .
[2] A. H. Clifford,et al. Note on Hahn’s theorem on ordered abelian groups , 1954 .
[3] A. B. BASSET,et al. Modern Algebra , 1905, Nature.
[4] Zur Proportionslehre. (Mit 3 Figuren im Text) , 1903 .
[5] E. Zermelo. Beweis, daß jede Menge wohlgeordnet werden kann , 1904 .
[6] Gregory H. Moore. Zermelo’s Axiom of Choice , 1982 .
[7] L. Balser. Ueber den Fundamentalsatz der projectiven Geometrie , 1901 .
[8] C. J. Everett,et al. Ordered Groups , 1945, Dimension Groups and Dynamical Systems.
[9] N. L. Alling,et al. CONWAY'S FIELD OF SURREAL NUMBERS , 1985 .
[10] Sibylla Priess-Crampe. Zum Hahnschen Einbettungssatz für angeordnete Körper , 1973 .
[11] D. Laugwitz,et al. Eine Erweiterung der Infinitesimalrechnung , 1958 .
[12] Philip Ehrlich. The Absolute Arithmetic and Geometric Continua , 1986, PSA: Proceedings of the Biennial Meeting of the Philosophy of Science Association.
[13] D. Hilbert. Les principes fondamentaux de la géométrie , 1900 .
[14] Sibylla Prieß-Crampe,et al. Angeordnete Strukturen : Gruppen, Körper, projektive Ebenen , 1983 .
[15] E. Artin,et al. Algebraische Konstruktion reeller Körper , 1927 .
[16] R.K. Guy,et al. On numbers and games , 1978, Proceedings of the IEEE.
[17] B. H. Neumann,et al. On ordered division rings , 1949 .
[18] D. Hilbert,et al. Neue Begründung der Bolyai-Lobatschefskyschen Geometrie , 1903 .
[19] John Dauns,et al. An embedding theorem for lattice-ordered fields , 1969 .
[20] L. Fuchs. Modules over valuation domains , 1985 .
[21] Volker Weispfenning,et al. Quantifier elimination and decision procedures for valued fields , 1984 .
[22] G. L.. Collected Papers , 1912, Nature.
[23] L. Rédei. CHAPTER I – SET-THEORETICAL PRELIMINARIES , 1967 .
[24] David Hilbert,et al. The Foundations of Geometry , 1903, The Mathematical Gazette.
[25] E Ya Gabovich,et al. FULLY ORDERED SEMIGROUPS AND THEIR APPLICATIONS , 1976 .
[26] Paul Bois-Reymond. Sur la grandeur relative des infinis des fonctions , 1870 .
[27] Kenkichi Iwasawa,et al. On linearly ordered groups. , 1948 .
[28] O. Stolz. Zur Geometrie der Alten, insbesondere über ein Axiom des archimedes , 1883 .
[29] Irving Kaplansky,et al. Maximal fields with valuations, II , 1942 .
[30] R. Baer. The Subgroup of the Elements of Finite Order of an Abelian Group , 1936 .
[31] G. Fisher,et al. The infinite and infinitesimal quantities of du Bois-Reymond and their reception , 1981 .
[32] J. T. Pairó. Sistemes Algèbrics ordenats: aproximació històrica , 1984 .
[33] F. Enriques. Prinzipien der Geometrie , 1910 .
[34] Nicolas Bourbaki. Elements of Mathematics: Theory of Sets , 1968 .
[35] B. H. Neumann,et al. On Ordered Groups , 1949 .
[36] Philip Ehrlich. Absolutely saturated models , 1989 .
[37] Michael M. Richter,et al. Models and Sets , 1985 .
[38] ηα-Strukturen , 1978 .
[39] J. Davenport. Editor , 1960 .
[41] H. Brungs. Noncommutative Valuation Rings , 1988 .
[42] D. Rees,et al. Lecons sur la Theorie des Treillis des Structures Algebriques Ordonnees et des Treillis Geometriques , 1955 .
[43] J. Nagata,et al. On rings of continuous functions , 1977 .
[44] W. Luxemburg. Non-Standard Analysis , 1977 .
[45] Paul F. Conrad,et al. Lattice ordered groups , 1970 .
[46] Gerhard Hessenberg. Beweis des Desarguesschen Satzes aus dem Pascalschen , 1905 .
[47] Hofreiter. Moderne Algebra , 1941 .
[48] C. Holland,et al. The Hahn embedding theorem for abelian lattice-ordered groups , 1963 .
[49] S. Lang. The Theory of Real Places , 1953 .
[50] D. Louvish,et al. Fully Ordered Groups , 1974 .
[51] D. Hilbert,et al. Festschrift zur Feier der Enthüllung des Gauss-Weber-Denkmals in Göttingen , 2009 .
[52] C. Tsinakis,et al. Ordered algebraic structures , 1985 .
[53] G. M.. Grundlagen der Geometrie , 1909, Nature.
[54] P. Finsler. Über die Grundlegung der Mengenlehre , 1963 .
[55] P. Finsler,et al. ber die Grundlegung der Mengenlehre: Erster Teil. Die Mengen und ihre Axiome , 1926 .
[56] T. Lam. Orderings, valuations, and quadratic forms , 1983 .
[57] C. Holland. Extensions of ordered groups and sequence completion , 1963 .
[58] G. Hamel. Eine Basis aller Zahlen und die unstetigen Lösungen der Funktionalgleichung:f(x+y)=f(x)+f(y) , 1905 .
[59] H.-D. Ebbinghaus,et al. Model Theory of Henselian Valued Fields , 1989 .
[60] Neue Begründung der ebenen Geometrie , 1907 .
[61] Giuseppe Veronese. On Non-Archimedean Geometry , 1994 .
[62] G. A. Dirac,et al. Moderne Algebra. I , 1951 .
[63] von David Hilbert. Über den Satz von der Gleichheit der Basiswinkel im gleich-schenkligen Dreieck , 1902 .
[64] Graham Higman,et al. Ordering by Divisibility in Abstract Algebras , 1952 .
[65] Leonard Gillman,et al. Rings of continuous functions , 1961 .
[66] K. D. Stroyan,et al. Introduction to the theory of infinitesimals , 1976 .
[67] Abraham Adolf Fraenkel. Einleitung in die Mengenlehre , 1919 .
[68] D. Hilbert,et al. Über homogene Functionen. , 1900 .
[69] H. Kunkel. GENERAL INTRODUCTION , 1971, The Journal of experimental medicine.
[70] K. Gravett,et al. VALUED LINEAR SPACES , 1955 .
[71] A. H. Clifford,et al. Totally ordered commutative semigroups , 1958 .
[72] Gregory H. Moore. Zermelo's Axiom of Choice: Its Origins, Development, and Influence , 1982 .
[73] O. Stolz. Ueber das Axiom des Archimedes , 1891 .
[74] R. Redfield. Banaschewski Functions and Ring-Embeddings , 1989 .
[75] C. Goffman,et al. The topology of ordered Abelian groups , 1949 .
[76] W. Groß. Grundzüge der Mengenlehre , 1915 .
[77] K. Gravett. ORDERED ABELIAN GROUPS , 1956 .
[78] Simon Kochen,et al. The model theory of local fields , 1975 .
[79] Wilhelm Killing. Ueber die Grundlagen der Geometrie. , 1892 .
[80] Positively Ordered Semigroups , 1979 .
[81] E. V. Huntington,et al. A complete set of postulates for the theory of absolute continuous magnitude , 1902 .
[82] Martin Ziegler,et al. Die elementare Theorie der henselschen Körper , 1972 .
[83] Rudolf Carnap,et al. On extremal axioms , 1981 .
[84] F. Hausdorff,et al. Grundzüge einer Theorie der geordneten Mengen , 1908 .
[85] G. A. Miller,et al. MATHEMATISCHE ZEITSCHRIFT. , 1920, Science.
[86] Nöbeling. Algebraische Theorie der Körper , 1931 .
[87] Über den Inhalt sphärischer Dreiecke , 1905 .
[88] Johannes Thomae,et al. Abriss einer Theorie der complexen Functionen und der Thetafunctionen einer Veränderlichen , 2022 .
[89] Alexander Ostrowski,et al. Untersuchungen zur arithmetischen Theorie der Körper , 1935 .
[90] Jean-Pierre Ressayre,et al. Every Real Closed Field Has an Integer Part , 1993, J. Symb. Log..
[91] P. Erdös,et al. An Isomorphism Theorem for Real-Closed Fields , 1955 .
[92] H. Poincaré,et al. Les Mathematiques et la Logique. , 1906 .
[93] Paul F. Conrad. Embedding Theorems for Abelian Groups with Valuations , 1953 .
[94] Philip Ehrlich,et al. Real Numbers, Generalizations of the Reals and Theories of Continua (Synthese Library, Vol. 242) , 1994 .
[95] Tsit Yuen Lam,et al. A first course in noncommutative rings , 2002 .
[96] Volker Weispfenning,et al. On the elementary theory of Hensel fields , 1976 .
[97] Hao Wang,et al. Reflections on Kurt Gödel , 1987 .
[98] J. Esterle,et al. Solution d'un problème d'Erdős,Gillman etHenriksen et application a l'étude des homomorphismes de $$C$$ (K)(K) , 1977 .
[99] Philip Ehrlich,et al. An alternative construction of Conway's ordered field No , 1988 .
[100] Putnam,et al. The Collected Papers. , 1988 .
[101] Simon Kochen,et al. DIOPHANTINE PROBLEMS OVER LOCAL FIELDS II. A COMPLETE SET OF AXIOMS FOR p-ADIC NUMBER THEORY.* , 1965 .
[102] Ordnungsverträgliche Bewertungen eines angeordneten Körpers , 1975 .
[103] Norman L. Alling. On exponentially closed fields , 1962 .
[104] S. Kochen,et al. Diophantine Problems Over Local Fields I , 1965 .
[105] Saunders MacLane,et al. The universality of formal power series fields , 1939 .
[106] W. Krull,et al. Allgemeine Bewertungstheorie. , 1932 .
[107] E. Artin,et al. Eine Kennzeichnung der reell abgeschlossenen Körper , 1927 .
[108] G. Fisher. Veronese’s Non-Archimedean Linear Continuum , 1994 .
[109] Jahrbuch über die Fortschritte der Mathematik , 1889 .
[110] O. Stolz. B. Bolzano's Bedeutung in der Geschichte der Infinitesimalrechnung , 1881 .
[111] G. Temple,et al. 100 years of mathematics , 1981 .
[112] N. L. Alling,et al. On the existence of real-closed fields that are _{}-sets of power ℵ_{} , 1962 .
[113] R. W. H. T. Hudson. Hermann Grassmann. Gesammelte mathematische und physicalische Werke. II. Band, I. Theil. Die Abhandlungen zur Geometrie und Analysis. 1904. (Teubner, Leipzig.) , 1904 .
[114] J. Cassels. LECTURES ON FORMALLY REAL FIELDS (Lecture Notes in Mathematics, 1093) , 1985 .
[115] G. Preuss. Felix Hausdorff (1868 – 1942) , 1997 .
[116] P. Ribenboim. Théorie des groupes ordonnés , 1963 .
[117] M. Dehn. Die Legendre'schen Sätze über die Winkelsumme im Dreieck , 1900 .
[118] H. Hahn,et al. Über die nichtarchimedischen Größensysteme , 1995 .
[119] Henry Blumberg,et al. Hausdorff's Grundzüge der Mengenlehre , 1920 .
[120] E. R. Hedrick,et al. Elementary Mathematics from an Advanced Standpoint. Arithmetic. Algebra. Analysis , 1933 .
[121] D. Garling,et al. Algebra, Volume 1 , 1969, Mathematical Gazette.
[122] O. Schilling. Arithmetic in Fields of Formal Power Series in Several Variables , 1937 .
[123] W. Schwan,et al. Grundlagen der Geometrie , 1931 .
[124] Friedrich Bachmann,et al. Über Extremalaxiome , 1936 .
[125] J. G. Wendel,et al. ORDERED VECTOR SPACES , 1952 .