Hahn’s Über die Nichtarchimedischen Grössensysteme and the Development of the Modern Theory of Magnitudes and Numbers to Measure Them

The ordered field ℜ of real numbers is of course up to isomorphism the unique Dedekind continuous ordered field. Equally important, though apparently less well known, is the fact that ℜ is also up to isomorphism the unique Archimedean complete, Archimedean ordered field. The idea of an Archimedean complete ordered field was introduced by Hans Hahn in his celebrated investigation Uber die nichtarchimedischen Grossensysteme which was presented to the Royal Academy of Sciences in Vienna in 1907. It is a special case of his more general conception of an Archimedean complete, ordered abelian group, a conception that was motivated by, and substantially generalizes, the idea of ℜ as an Archimedean ordered field which admits no proper extension to an Archimedean ordered field; that is, the idea of an Archimedean ordered field which satisfies Hilbert’s Axiom of (arithmetic) Completeness (Hilbert 1900a, p. 183; 1903a, p. 16).

[1]  P. Bois-Reymond Ueber die Paradoxen des Infinitärcalcüls , 1877 .

[2]  A. H. Clifford,et al.  Note on Hahn’s theorem on ordered abelian groups , 1954 .

[3]  A. B. BASSET,et al.  Modern Algebra , 1905, Nature.

[4]  Zur Proportionslehre. (Mit 3 Figuren im Text) , 1903 .

[5]  E. Zermelo Beweis, daß jede Menge wohlgeordnet werden kann , 1904 .

[6]  Gregory H. Moore Zermelo’s Axiom of Choice , 1982 .

[7]  L. Balser Ueber den Fundamentalsatz der projectiven Geometrie , 1901 .

[8]  C. J. Everett,et al.  Ordered Groups , 1945, Dimension Groups and Dynamical Systems.

[9]  N. L. Alling,et al.  CONWAY'S FIELD OF SURREAL NUMBERS , 1985 .

[10]  Sibylla Priess-Crampe Zum Hahnschen Einbettungssatz für angeordnete Körper , 1973 .

[11]  D. Laugwitz,et al.  Eine Erweiterung der Infinitesimalrechnung , 1958 .

[12]  Philip Ehrlich The Absolute Arithmetic and Geometric Continua , 1986, PSA: Proceedings of the Biennial Meeting of the Philosophy of Science Association.

[13]  D. Hilbert Les principes fondamentaux de la géométrie , 1900 .

[14]  Sibylla Prieß-Crampe,et al.  Angeordnete Strukturen : Gruppen, Körper, projektive Ebenen , 1983 .

[15]  E. Artin,et al.  Algebraische Konstruktion reeller Körper , 1927 .

[16]  R.K. Guy,et al.  On numbers and games , 1978, Proceedings of the IEEE.

[17]  B. H. Neumann,et al.  On ordered division rings , 1949 .

[18]  D. Hilbert,et al.  Neue Begründung der Bolyai-Lobatschefskyschen Geometrie , 1903 .

[19]  John Dauns,et al.  An embedding theorem for lattice-ordered fields , 1969 .

[20]  L. Fuchs Modules over valuation domains , 1985 .

[21]  Volker Weispfenning,et al.  Quantifier elimination and decision procedures for valued fields , 1984 .

[22]  G. L. Collected Papers , 1912, Nature.

[23]  L. Rédei CHAPTER I – SET-THEORETICAL PRELIMINARIES , 1967 .

[24]  David Hilbert,et al.  The Foundations of Geometry , 1903, The Mathematical Gazette.

[25]  E Ya Gabovich,et al.  FULLY ORDERED SEMIGROUPS AND THEIR APPLICATIONS , 1976 .

[26]  Paul Bois-Reymond Sur la grandeur relative des infinis des fonctions , 1870 .

[27]  Kenkichi Iwasawa,et al.  On linearly ordered groups. , 1948 .

[28]  O. Stolz Zur Geometrie der Alten, insbesondere über ein Axiom des archimedes , 1883 .

[29]  Irving Kaplansky,et al.  Maximal fields with valuations, II , 1942 .

[30]  R. Baer The Subgroup of the Elements of Finite Order of an Abelian Group , 1936 .

[31]  G. Fisher,et al.  The infinite and infinitesimal quantities of du Bois-Reymond and their reception , 1981 .

[32]  J. T. Pairó Sistemes Algèbrics ordenats: aproximació històrica , 1984 .

[33]  F. Enriques Prinzipien der Geometrie , 1910 .

[34]  Nicolas Bourbaki Elements of Mathematics: Theory of Sets , 1968 .

[35]  B. H. Neumann,et al.  On Ordered Groups , 1949 .

[36]  Philip Ehrlich Absolutely saturated models , 1989 .

[37]  Michael M. Richter,et al.  Models and Sets , 1985 .

[38]  ηα-Strukturen , 1978 .

[39]  J. Davenport Editor , 1960 .

[41]  H. Brungs Noncommutative Valuation Rings , 1988 .

[42]  D. Rees,et al.  Lecons sur la Theorie des Treillis des Structures Algebriques Ordonnees et des Treillis Geometriques , 1955 .

[43]  J. Nagata,et al.  On rings of continuous functions , 1977 .

[44]  W. Luxemburg Non-Standard Analysis , 1977 .

[45]  Paul F. Conrad,et al.  Lattice ordered groups , 1970 .

[46]  Gerhard Hessenberg Beweis des Desarguesschen Satzes aus dem Pascalschen , 1905 .

[47]  Hofreiter Moderne Algebra , 1941 .

[48]  C. Holland,et al.  The Hahn embedding theorem for abelian lattice-ordered groups , 1963 .

[49]  S. Lang The Theory of Real Places , 1953 .

[50]  D. Louvish,et al.  Fully Ordered Groups , 1974 .

[51]  D. Hilbert,et al.  Festschrift zur Feier der Enthüllung des Gauss-Weber-Denkmals in Göttingen , 2009 .

[52]  C. Tsinakis,et al.  Ordered algebraic structures , 1985 .

[53]  G. M. Grundlagen der Geometrie , 1909, Nature.

[54]  P. Finsler Über die Grundlegung der Mengenlehre , 1963 .

[55]  P. Finsler,et al.  ber die Grundlegung der Mengenlehre: Erster Teil. Die Mengen und ihre Axiome , 1926 .

[56]  T. Lam Orderings, valuations, and quadratic forms , 1983 .

[57]  C. Holland Extensions of ordered groups and sequence completion , 1963 .

[58]  G. Hamel Eine Basis aller Zahlen und die unstetigen Lösungen der Funktionalgleichung:f(x+y)=f(x)+f(y) , 1905 .

[59]  H.-D. Ebbinghaus,et al.  Model Theory of Henselian Valued Fields , 1989 .

[60]  Neue Begründung der ebenen Geometrie , 1907 .

[61]  Giuseppe Veronese On Non-Archimedean Geometry , 1994 .

[62]  G. A. Dirac,et al.  Moderne Algebra. I , 1951 .

[63]  von David Hilbert Über den Satz von der Gleichheit der Basiswinkel im gleich-schenkligen Dreieck , 1902 .

[64]  Graham Higman,et al.  Ordering by Divisibility in Abstract Algebras , 1952 .

[65]  Leonard Gillman,et al.  Rings of continuous functions , 1961 .

[66]  K. D. Stroyan,et al.  Introduction to the theory of infinitesimals , 1976 .

[67]  Abraham Adolf Fraenkel Einleitung in die Mengenlehre , 1919 .

[68]  D. Hilbert,et al.  Über homogene Functionen. , 1900 .

[69]  H. Kunkel GENERAL INTRODUCTION , 1971, The Journal of experimental medicine.

[70]  K. Gravett,et al.  VALUED LINEAR SPACES , 1955 .

[71]  A. H. Clifford,et al.  Totally ordered commutative semigroups , 1958 .

[72]  Gregory H. Moore Zermelo's Axiom of Choice: Its Origins, Development, and Influence , 1982 .

[73]  O. Stolz Ueber das Axiom des Archimedes , 1891 .

[74]  R. Redfield Banaschewski Functions and Ring-Embeddings , 1989 .

[75]  C. Goffman,et al.  The topology of ordered Abelian groups , 1949 .

[76]  W. Groß Grundzüge der Mengenlehre , 1915 .

[77]  K. Gravett ORDERED ABELIAN GROUPS , 1956 .

[78]  Simon Kochen,et al.  The model theory of local fields , 1975 .

[79]  Wilhelm Killing Ueber die Grundlagen der Geometrie. , 1892 .

[80]  Positively Ordered Semigroups , 1979 .

[81]  E. V. Huntington,et al.  A complete set of postulates for the theory of absolute continuous magnitude , 1902 .

[82]  Martin Ziegler,et al.  Die elementare Theorie der henselschen Körper , 1972 .

[83]  Rudolf Carnap,et al.  On extremal axioms , 1981 .

[84]  F. Hausdorff,et al.  Grundzüge einer Theorie der geordneten Mengen , 1908 .

[85]  G. A. Miller,et al.  MATHEMATISCHE ZEITSCHRIFT. , 1920, Science.

[86]  Nöbeling Algebraische Theorie der Körper , 1931 .

[87]  Über den Inhalt sphärischer Dreiecke , 1905 .

[88]  Johannes Thomae,et al.  Abriss einer Theorie der complexen Functionen und der Thetafunctionen einer Veränderlichen , 2022 .

[89]  Alexander Ostrowski,et al.  Untersuchungen zur arithmetischen Theorie der Körper , 1935 .

[90]  Jean-Pierre Ressayre,et al.  Every Real Closed Field Has an Integer Part , 1993, J. Symb. Log..

[91]  P. Erdös,et al.  An Isomorphism Theorem for Real-Closed Fields , 1955 .

[92]  H. Poincaré,et al.  Les Mathematiques et la Logique. , 1906 .

[93]  Paul F. Conrad Embedding Theorems for Abelian Groups with Valuations , 1953 .

[94]  Philip Ehrlich,et al.  Real Numbers, Generalizations of the Reals and Theories of Continua (Synthese Library, Vol. 242) , 1994 .

[95]  Tsit Yuen Lam,et al.  A first course in noncommutative rings , 2002 .

[96]  Volker Weispfenning,et al.  On the elementary theory of Hensel fields , 1976 .

[97]  Hao Wang,et al.  Reflections on Kurt Gödel , 1987 .

[98]  J. Esterle,et al.  Solution d'un problème d'Erdős,Gillman etHenriksen et application a l'étude des homomorphismes de $$C$$ (K)(K) , 1977 .

[99]  Philip Ehrlich,et al.  An alternative construction of Conway's ordered field No , 1988 .

[100]  Putnam,et al.  The Collected Papers. , 1988 .

[101]  Simon Kochen,et al.  DIOPHANTINE PROBLEMS OVER LOCAL FIELDS II. A COMPLETE SET OF AXIOMS FOR p-ADIC NUMBER THEORY.* , 1965 .

[102]  Ordnungsverträgliche Bewertungen eines angeordneten Körpers , 1975 .

[103]  Norman L. Alling On exponentially closed fields , 1962 .

[104]  S. Kochen,et al.  Diophantine Problems Over Local Fields I , 1965 .

[105]  Saunders MacLane,et al.  The universality of formal power series fields , 1939 .

[106]  W. Krull,et al.  Allgemeine Bewertungstheorie. , 1932 .

[107]  E. Artin,et al.  Eine Kennzeichnung der reell abgeschlossenen Körper , 1927 .

[108]  G. Fisher Veronese’s Non-Archimedean Linear Continuum , 1994 .

[109]  Jahrbuch über die Fortschritte der Mathematik , 1889 .

[110]  O. Stolz B. Bolzano's Bedeutung in der Geschichte der Infinitesimalrechnung , 1881 .

[111]  G. Temple,et al.  100 years of mathematics , 1981 .

[112]  N. L. Alling,et al.  On the existence of real-closed fields that are _{}-sets of power ℵ_{} , 1962 .

[113]  R. W. H. T. Hudson Hermann Grassmann. Gesammelte mathematische und physicalische Werke. II. Band, I. Theil. Die Abhandlungen zur Geometrie und Analysis. 1904. (Teubner, Leipzig.) , 1904 .

[114]  J. Cassels LECTURES ON FORMALLY REAL FIELDS (Lecture Notes in Mathematics, 1093) , 1985 .

[115]  G. Preuss Felix Hausdorff (1868 – 1942) , 1997 .

[116]  P. Ribenboim Théorie des groupes ordonnés , 1963 .

[117]  M. Dehn Die Legendre'schen Sätze über die Winkelsumme im Dreieck , 1900 .

[118]  H. Hahn,et al.  Über die nichtarchimedischen Größensysteme , 1995 .

[119]  Henry Blumberg,et al.  Hausdorff's Grundzüge der Mengenlehre , 1920 .

[120]  E. R. Hedrick,et al.  Elementary Mathematics from an Advanced Standpoint. Arithmetic. Algebra. Analysis , 1933 .

[121]  D. Garling,et al.  Algebra, Volume 1 , 1969, Mathematical Gazette.

[122]  O. Schilling Arithmetic in Fields of Formal Power Series in Several Variables , 1937 .

[123]  W. Schwan,et al.  Grundlagen der Geometrie , 1931 .

[124]  Friedrich Bachmann,et al.  Über Extremalaxiome , 1936 .

[125]  J. G. Wendel,et al.  ORDERED VECTOR SPACES , 1952 .