Single-cell lysis for visual analysis by electron microscopy.

[1]  X. Xie,et al.  Genome-Wide Detection of Single-Nucleotide and Copy-Number Variations of a Single Human Cell , 2012, Science.

[2]  Abraham J. Koster,et al.  Pushing the resolution limits in cryo electron tomography of biological structures , 2012, Journal of microscopy.

[3]  Kevin A. Pelphrey,et al.  Genome-Wide Detection of Single-Nucleotide and Copy-Number Variations of a Single Human Cell , 2012 .

[4]  Andreas Hierlemann,et al.  Connecting μ-fluidics to electron microscopy. , 2012, Journal of structural biology.

[5]  G. Dernick,et al.  Multidimensional profiling of plasma lipoproteins by size exclusion chromatography followed by reverse-phase protein arrays , 2011, Journal of Lipid Research.

[6]  Stephen R Quake,et al.  Genomic analysis at the single-cell level. , 2011, Annual review of genetics.

[7]  Saeid Movahed,et al.  Microfluidics cell electroporation , 2011 .

[8]  Mario Roederer,et al.  Single-cell gene-expression profiling reveals qualitatively distinct CD8 T cells elicited by different gene-based vaccines , 2011, Proceedings of the National Academy of Sciences.

[9]  Min Xu,et al.  Exploring the spatial and temporal organization of a cell's proteome. , 2011, Journal of structural biology.

[10]  H. Westerhoff Systems biology left and right. , 2011, Methods in enzymology.

[11]  M. Elowitz,et al.  Functional roles for noise in genetic circuits , 2010, Nature.

[12]  S. Bodovitz,et al.  Single cell analysis: the new frontier in 'omics'. , 2010, Trends in biotechnology.

[13]  A. Engel Assessing Biological Samples with Scanning Probes , 2010 .

[14]  O. Medalia,et al.  Cryoelectron tomography of eukaryotic cells. , 2010, Methods in enzymology.

[15]  Alexander Revzin,et al.  Micropatterning of proteins and mammalian cells on indium tin oxide. , 2009, ACS applied materials & interfaces.

[16]  R. Aebersold,et al.  Visual proteomics of the human pathogen Leptospira interrogans , 2009, Nature Methods.

[17]  Lukas N. Mueller,et al.  Full Dynamic Range Proteome Analysis of S. cerevisiae by Targeted Proteomics , 2009, Cell.

[18]  A. Engel,et al.  Chapter 9 Scanning Transmission Electron Microscopy: Biological Applications , 2009 .

[19]  M. Yousaf,et al.  Renewable and optically transparent electroactive indium tin oxide surfaces for chemoselective ligand immobilization and biospecific cell adhesion. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[20]  A. Oudenaarden,et al.  Nature, Nurture, or Chance: Stochastic Gene Expression and Its Consequences , 2008, Cell.

[21]  J. Audet,et al.  Current techniques for single-cell lysis , 2008, Journal of The Royal Society Interface.

[22]  A. Hoenger,et al.  High-resolution single-particle 3D analysis on GroEL prepared by cryo-negative staining. , 2008, Micron.

[23]  Matthias Heinemann,et al.  Mass spectrometric method for analyzing metabolites in yeast with single cell sensitivity. , 2008, Angewandte Chemie.

[24]  Grant J. Jensen,et al.  3-D Ultrastructure of O. tauri: Electron Cryotomography of an Entire Eukaryotic Cell , 2007, PloS one.

[25]  Tomoyuki Yasukawa,et al.  Measurement of gene expression from single adherent cells and spheroids collected using fast electrical lysis. , 2007, Analytical chemistry.

[26]  Jens M. Rick,et al.  Quantitative mass spectrometry in proteomics: a critical review , 2007, Analytical and bioanalytical chemistry.

[27]  Wolfgang Baumeister,et al.  Localization of protein complexes by pattern recognition. , 2007, Methods in cell biology.

[28]  H. C. Mastwijk,et al.  Electroporation of cells in microfluidic devices: a review , 2006, Analytical and bioanalytical chemistry.

[29]  Wolfgang Baumeister,et al.  A visual approach to proteomics , 2006, Nature Reviews Molecular Cell Biology.

[30]  Serhiy Souchelnytskyi,et al.  Bridging proteomics and systems biology: What are the roads to be traveled? , 2005, Proteomics.

[31]  Michael G. Sehorn,et al.  Human meiotic recombinase Dmc1 promotes ATP-dependent homologous DNA strand exchange , 2004, Nature.

[32]  Alasdair C Steven,et al.  ClpA and ClpX ATPases bind simultaneously to opposite ends of ClpP peptidase to form active hybrid complexes. , 2004, Journal of structural biology.

[33]  Mark Bachman,et al.  Fast electrical lysis of cells for capillary electrophoresis. , 2003, Analytical chemistry.

[34]  R. Aebersold,et al.  Mass spectrometry-based proteomics , 2003, Nature.

[35]  W. Baumeister,et al.  Macromolecular Architecture in Eukaryotic Cells Visualized by Cryoelectron Tomography , 2002, Science.

[36]  A. Goldberg,et al.  Properties of the hybrid form of the 26S proteasome containing both 19S and PA28 complexes , 2002, The EMBO journal.

[37]  Oliver Fiehn,et al.  Combining Genomics, Metabolome Analysis, and Biochemical Modelling to Understand Metabolic Networks , 2001, Comparative and functional genomics.

[38]  S. Mazumdar,et al.  Structural and conformational stability of horseradish peroxidase: effect of temperature and pH. , 2000, Biochemistry.

[39]  L. Rome,et al.  Vaults. II. Ribonucleoprotein structures are highly conserved among higher and lower eukaryotes , 1990, The Journal of cell biology.

[40]  U. Aebi,et al.  The Three‐Dimensional Structure of the Actin Filament Revisited a , 1986, Annals of the New York Academy of Sciences.