Exceptionally high energy storage density for seasonal thermochemical energy storage by encapsulation of calcium chloride into hydrophobic nanosilica capsules

[1]  J. Klemeš,et al.  Salt hydrate–based gas-solid thermochemical energy storage: Current progress, challenges, and perspectives , 2022, Renewable and Sustainable Energy Reviews.

[2]  B. Hughes,et al.  A review of thermal energy storage technologies for seasonal loops , 2022, Energy.

[3]  H. Fischer,et al.  Encapsulation of Salt Hydrates by Polymer Coatings for Low-Temperature Heat Storage Applications , 2021 .

[4]  H. Fischer,et al.  Core–Shell Encapsulation of Salt Hydrates into Mesoporous Silica Shells for Thermochemical Energy Storage , 2020 .

[5]  H. Huinink,et al.  Stabilization of K2CO3 in vermiculite for thermochemical energy storage , 2020 .

[6]  Tingxian Li,et al.  Understanding the transition process of phase change and dehydration reaction of salt hydrate for thermal energy storage , 2020 .

[7]  M. Farid,et al.  State of the art on salt hydrate thermochemical energy storage systems for use in building applications , 2020 .

[8]  Luyi Sun,et al.  Dry hydrated potassium carbonate for effective CO2 capture. , 2020, Dalton transactions.

[9]  A. Frazzica,et al.  Recent advancements in sorption technology for solar thermal energy storage applications , 2019, Solar Energy.

[10]  T. Yan,et al.  High energy-density multi-form thermochemical energy storage based on multi-step sorption processes , 2019, Energy.

[11]  Y. Ok,et al.  Performance of dry water- and porous carbon-based sorbents for carbon dioxide capture. , 2019, Environmental research.

[12]  Qinhao Lin,et al.  A comprehensive study of hygroscopic properties of calcium- and magnesium-containing salts: implication for hygroscopicity of mineral dust and sea salt aerosols , 2018, Atmospheric Chemistry and Physics.

[13]  Ha Herbert Zondag,et al.  Characterization of microencapsulated and impregnated porous host materials based on calcium chloride for thermochemical energy storage , 2018 .

[14]  M. Degrez,et al.  Further improvement of the synthesis of silica gel and CaCl2 composites: Enhancement of energy storage density and stability over cycles for solar heat storage coupled with space heating applications , 2017 .

[15]  N. Zhao,et al.  Rationally Turning the Interface Activity of Mesoporous Silicas for Preparing Pickering Foam and "Dry Water". , 2017, Langmuir : the ACS journal of surfaces and colloids.

[16]  H. Fischer,et al.  A review of salt hydrates for seasonal heat storage in domestic applications , 2017 .

[17]  Sujing Wang,et al.  Design of salt–metal organic framework composites for seasonal heat storage applications , 2017 .

[18]  V. Chevrier,et al.  Formation of liquid water at low temperatures via the deliquescence of calcium chloride: Implications for Antarctica and Mars , 2016 .

[19]  Yanping Yuan,et al.  Inorganic composite sorbents for water vapor sorption: A research progress , 2016 .

[20]  H. Shum,et al.  Mechanical Compression to Characterize the Robustness of Liquid Marbles. , 2015, Langmuir : the ACS journal of surfaces and colloids.

[21]  A. Cooper,et al.  ‘Dry bases’: carbon dioxide capture using alkaline dry water , 2014 .

[22]  L. W. Wang,et al.  Sorption thermal storage for solar energy , 2013 .

[23]  A. Wörner,et al.  Reversible hydration behavior of CaCl2 at high H2O partial pressures for thermochemical energy storage , 2013 .

[24]  Luisa F. Cabeza,et al.  Thermochemical energy storage and conversion: A-state-of-the-art review of the experimental research under practical conditions , 2012 .

[25]  ボリン、ゲラン,et al.  Salt coated with nanoparticles , 2012 .

[26]  P. Guigon,et al.  Dry water: From physico-chemical aspects to process-related parameters , 2011 .

[27]  R. Denoyel,et al.  Contact angle assessment of hydrophobic silica nanoparticles related to the mechanisms of dry water formation. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[28]  B. Binks,et al.  Inversion of ‘dry water’ to aqueous foam on addition of surfactant , 2010 .

[29]  Isabelle Pezron,et al.  Storing water in powder form by self-assembling hydrophobic silica nanoparticles , 2007 .

[30]  Bernard P. Binks,et al.  Phase inversion of particle-stabilized materials from foams to dry water , 2006, Nature materials.

[31]  A. Wexler,et al.  Thermodynamics of carbonates and hydrates related to heterogeneous reactions involving mineral aerosol , 2005 .

[32]  Manuel R. Conde,et al.  Properties of aqueous solutions of lithium and calcium chlorides: formulations for use in air conditioning equipment design , 2004 .

[33]  K. Pitzer,et al.  Thermodynamics of calcium chloride in concentrated aqueous solutions and in crystals , 1994 .

[34]  F. Grønvold,et al.  Thermodynamic properties and phase transitions of salt hydrates between 270 and 400 K IV. CaCl2·6H2O, CaCl2·4H2O, CaCl2·2H2O, and FeCl3·6H2O , 1986 .

[35]  K. Kelley,et al.  The Specific Heats at Low Temperatures of Anhydrous Chlorides of Calcium, Iron, Magnesium and Manganese1 , 1943 .

[36]  Axel Lannung Dampfdruckmessungen des Systems Calciumchlorid–Wasser , 1936 .