Analysis of risk measures in multiobjective optimization portfolios with cardinality constraint
暂无分享,去创建一个
Rodrigo T. N. Cardoso | Felipe Dias Paiva | Bruno C. Barroso | Bruno Cândido Barroso | Mariana dos Santos de Oliveira | R. N. Cardoso | Felipe D. Paiva | Mariana Dos Santos De Oliveira
[1] Rodrigo T. N. Cardoso,et al. Composition of investment portfolios through a combinatorial multiobjective optimization model using CVaR , 2017, 2017 IEEE Congress on Evolutionary Computation (CEC).
[2] Mei-Ling Tang,et al. In search of robust methods for multi-currency portfolio construction by value at risk , 2018, Asia-Pacific Financial Markets.
[3] Akiko Takeda,et al. Optimizing over coherent risk measures and non-convexities: a robust mixed integer optimization approach , 2015, Comput. Optim. Appl..
[4] T. Bollerslev,et al. Generalized autoregressive conditional heteroskedasticity , 1986 .
[5] Rodrigo T. N. Cardoso,et al. Parallel MOEAs for Combinatorial Multiobjective Optimization Model of Financial Portfolio Selection , 2018, 2018 IEEE Congress on Evolutionary Computation (CEC).
[6] Konstantinos Liagkouras,et al. Multiobjective Evolutionary Algorithms for Portfolio Management: A comprehensive literature review , 2012, Expert Syst. Appl..
[7] Jianjun Gao,et al. On cardinality constrained mean-CVaR portfolio optimization , 2015, The 27th Chinese Control and Decision Conference (2015 CCDC).
[8] Kalyanmoy Deb,et al. A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..
[9] Eva Alfaro-Cid,et al. A naïve approach to speed up portfolio optimization problem using a multiobjective genetic algorithm , 2012 .
[10] DIVERSIFICATION OF INVESTMENTS FOR THE BRAZILIAN EQUITY MARKET , 2014 .
[11] Nico van der Wijst,et al. Optimal portfolio selection and dynamic benchmark tracking , 2005, Eur. J. Oper. Res..
[12] Marco Laumanns,et al. SPEA2: Improving the strength pareto evolutionary algorithm , 2001 .
[13] Lixing Zhu,et al. Mean–variance, mean–VaR, and mean–CVaR models for portfolio selection with background risk , 2018, Risk Management.
[14] R. Rockafellar,et al. Optimization of conditional value-at risk , 2000 .
[15] Christian Kanzow,et al. Mathematical Programs with Cardinality Constraints: Reformulation by Complementarity-Type Conditions and a Regularization Method , 2016, SIAM J. Optim..
[16] Kalyanmoy Deb,et al. Bi-objective Portfolio Optimization Using a Customized Hybrid NSGA-II Procedure , 2011, EMO.
[17] Rosario N. Mantegna,et al. An Introduction to Econophysics: Contents , 1999 .
[18] R. K. Ursem. Multi-objective Optimization using Evolutionary Algorithms , 2009 .
[19] David N. Nawrocki. A Brief History of Downside Risk Measures , 1999 .
[20] R. Östermark,et al. Portfolio optimization based on GARCH-EVT-Copula forecasting models , 2018, International Journal of Forecasting.
[21] Javier Estrada,et al. Mean-Semivariance Optimization: A Heuristic Approach , 2007 .
[22] Martin Branda,et al. Convergence of a Scholtes-type regularization method for cardinality-constrained optimization problems with an application in sparse robust portfolio optimization , 2017, Comput. Optim. Appl..
[23] Konstantinos P. Anagnostopoulos,et al. The mean-variance cardinality constrained portfolio optimization problem: An experimental evaluation of five multiobjective evolutionary algorithms , 2011, Expert Syst. Appl..
[24] G. Mitra,et al. Portfolio selection models: a review and new directions , 2009 .
[25] Sandra Paterlini,et al. Multiobjective optimization using differential evolution for real-world portfolio optimization , 2011, Comput. Manag. Sci..