Accelerating materials development for photoelectrochemical hydrogen production: Standards for methods, definitions, and reporting protocols

Photoelectrochemical (PEC) water splitting for hydrogen production is a promising technology that uses sunlight and water to produce renewable hydrogen with oxygen as a by-product. In the expanding field of PEC hydrogen production, the use of standardized © 2010 Materials Research Society screening methods and reporting has emerged as a necessity. This article is intended to provide guidance on key practices in characterization of PEC materials and proper reporting of efficiencies. Presented here are the definitions of various efficiency values that pertain to PEC, with an emphasis on the importance of solar-to-hydrogen efficiency, as well as a flow chart with standard procedures for PEC characterization techniques for planar photoelectrode materials (i.e., not suspensions of particles) with a focus on single band gap absorbers. These guidelines serve as a foundation and prelude to a much more complete and in-depth discussion of PEC techniques and procedures presented elsewhere.

[1]  J. Chazalviel Experimental techniques for the study of the semiconductor—electrolyte interface , 1988 .

[2]  J. Turner Energetics of the semiconductor-electrolyte interface , 1983 .

[3]  I. E. Grey,et al.  Efficiency of solar water splitting using semiconductor electrodes , 2006 .

[4]  A. Murphy Band-gap determination from diffuse reflectance measurements of semiconductor films, and application to photoelectrochemical water-splitting , 2007 .

[5]  P. S. Reddy,et al.  Structural and optical studies on dc reactive magnetron sputtered Cu2O films , 2006 .

[6]  C. Hogarth,et al.  Optical Properties of Amorphous Thin Films of MoO3 Deposited by Vacuum Evaporation , 1988, October 16.

[7]  D. Friedman,et al.  GaNPAs solar cells lattice-matched to GaP , 2002, Conference Record of the Twenty-Ninth IEEE Photovoltaic Specialists Conference, 2002..

[8]  Arne Roos,et al.  Use of an integrating sphere in solar energy research , 1993 .

[9]  Y. Pleskov,et al.  Photoelectrochemical Determination of the Flatband Potential of Boron‐Doped Diamond , 1999 .

[10]  S. Kaneko,et al.  Novel Spray‐Pyrolysis Deposition of Cuprous Oxide Thin Films , 1998 .

[11]  Chandan Kumar Sarkar,et al.  Copper oxide thin films grown by plasma evaporation method , 1992 .

[12]  E. Dunlop,et al.  Spectral mismatch in calibration of photovoltaic reference devices by global sunlight method , 2005 .

[13]  Charles C. Sorrell,et al.  Photo-electrochemical hydrogen generation from water using solar energy. Materials-related aspects , 2002 .

[14]  P. Kubelka,et al.  New Contributions to the Optics of Intensely Light-Scattering Materials. Part I , 1948 .

[15]  Turner,et al.  A monolithic photovoltaic-photoelectrochemical device for hydrogen production via water splitting , 1998, Science.

[16]  S. Nishiwaki,et al.  Depth-resolved band gap in Cu(In,Ga)(S,Se) 2 thin films , 2008 .

[17]  X. Mathew,et al.  Temperature dependence of the optical transitions in electrodeposited Cu2O thin films , 2001 .

[18]  Heli Wang,et al.  Direct Water Splitting under Visible Light with Nanostructured Hematite and WO3 Photoanodes and a GaInP2 Photocathode , 2008 .

[19]  Carl A. Koval,et al.  Electron transfer at semiconductor electrode-liquid electrolyte interfaces , 1992 .

[20]  Eric L. Miller,et al.  Photoelectrolysis of water using thin copper gallium diselenide electrodes , 2008 .

[21]  B. Marsen,et al.  Influence of sputter oxygen partial pressure on photoelectrochemical performance of tungsten oxide films , 2007 .

[22]  B. Marsen,et al.  Electronic Surface Level Positions of WO3 Thin Films for Photoelectrochemical Hydrogen Production , 2008 .

[23]  J. Holdren,et al.  Energy and Sustainability , 2007, Science.

[24]  R. L. Meirhaeghe,et al.  On the application of the Kramers-Kronig relations to problems concerning the frequency dependence of electrode impedance , 1975 .

[25]  D. Ginley,et al.  The photoelectrolysis of water using iron titanate anodes , 1977 .

[26]  R. J. Elliott,et al.  Intensity of Optical Absorption by Excitons , 1957 .

[27]  G. Smestad Topical Editors in Solar Energy Materials and Solar Cells , 2008 .

[28]  Craig A. Grimes,et al.  Appropriate strategies for determining the photoconversion efficiency of water photoelectrolysis cells : A review with examples using titania nanotube array photoanodes , 2008 .

[29]  J. Pierson,et al.  Cuprite, paramelaconite and tenorite films deposited by reactive magnetron sputtering , 2003 .

[30]  N. Mott,et al.  Conduction in non-crystalline systems V. Conductivity, optical absorption and photoconductivity in amorphous semiconductors , 1970 .

[31]  P. D. Jongh,et al.  Cu2O: Electrodeposition and Characterization , 1999 .

[32]  John A. Turner,et al.  High-efficiency integrated multijunction photovoltaic/electrolysis systems for hydrogen production , 2001 .

[33]  A. Arora,et al.  Modifying the nanocrystalline characteristics: structure, size, and surface states of copper oxide thin films by high-energy heavy-ion irradiation , 2002 .

[34]  M. H. Islam,et al.  Band gap and refractive index determination of Mo-black coatings using several techniques , 1995 .

[35]  A. Czanderna,et al.  Optical Properties of Copper Oxide Films , 1966 .

[36]  Kazuhiro Ohkawa,et al.  Hydrogen Gas Generation by Splitting Aqueous Water Using n-Type GaN Photoelectrode with Anodic Oxidation , 2005 .

[37]  E. Stefanakos,et al.  Optical absorption red and blue shifts in ZnFe2O4 nanoparticles , 2008 .

[38]  M. A. Khadar,et al.  Evolution of nanostructure, phase transition and band gap tailoring in oxidized Cu thin films , 2008 .

[39]  F. Cardon,et al.  On the determination of the flat-band potential of a semiconductor in contact with a metal or an electrolyte from the Mott-Schottky plot , 1978 .

[40]  A. Murphy,et al.  Optical properties of an optically rough coating from inversion of diffuse reflectance measurements. , 2007, Applied optics.

[41]  A. Fujishima,et al.  Electrochemical Photolysis of Water at a Semiconductor Electrode , 1972, Nature.

[42]  K. Domen,et al.  Photoresponse of GaN:ZnO Electrode on FTO under Visible Light Irradiation , 2009 .

[43]  Max Shtein,et al.  Structure and Electronic Properties of Solid Acids Based on Tungsten Oxide Nanostructures , 1999 .

[44]  T. Mallouk,et al.  Sensitized layered metal oxide semiconductor particles for photochemical hydrogen evolution from nonsacrificial electron donors , 1993 .

[45]  D. L. Wood,et al.  Weak Absorption Tails in Amorphous Semiconductors , 1972 .

[46]  N. Lewis,et al.  Powering the planet: Chemical challenges in solar energy utilization , 2006, Proceedings of the National Academy of Sciences.

[47]  T. Mahalingam,et al.  Photoelectrochemical solar cell studies on electroplated cuprous oxide thin films , 2006 .

[48]  Arthur J. Nozik,et al.  Physical Chemistry of Semiconductor−Liquid Interfaces , 1996 .

[49]  J. Tauc,et al.  Optical and Magnetic Investigations of the Localized States in Semiconducting Glasses , 1970 .

[50]  V. Drobny,et al.  Properties of reactively-sputtered copper oxide thin films , 1979 .

[51]  A. Nozik,et al.  Photoelectrolysis of water using semiconducting TiO2 crystals , 1975, Nature.

[52]  F. Cardon,et al.  Electron energy levels in semiconductor electrochemistry , 1982 .

[53]  Optical absorption coefficient and thickness measurement of electrodeposited films of Cu2O , 1987 .

[54]  R. Grigorovici,et al.  Optical Properties and Electronic Structure of Amorphous Germanium , 1966, 1966.

[55]  P. Kulesza,et al.  Metal oxide photoanodes for solar hydrogen production , 2008 .

[56]  Martin A. A. Schoonen,et al.  An introduction to geocatalysis , 1998 .

[57]  A. Rakhshani,et al.  Preparation, characteristics and photovoltaic properties of cuprous oxide—a review , 1986 .

[58]  I. M. Dharmadasa,et al.  Study of annealing effects of cuprous oxide grown by electrodeposition technique , 1996 .

[59]  Etienne Goovaerts,et al.  Conference Record of the Twenty-Eighth IEEE Photovoltaic Specialists Conference, 2000 , 2000 .

[60]  T. Mallouk,et al.  Stabilization of intrazeolitic cadmium telluride nanoclusters by ion exchange , 1996 .

[61]  A. P. Finlayson,et al.  Evaluation of Bi–W‐oxides for visible light photocatalysis , 2006 .

[62]  Carl M. Lampert,et al.  Editorial: Reporting solar cell efficiencies in Solar Energy Materials and Solar Cells , 2008 .