Monte Carlo Kalman filter and smoothing for multivariate discrete state space models
暂无分享,去创建一个
[1] C. Czado. Multivariate Probit Analysis of Binary Time Series Data with Missing Responses , 1996 .
[2] W. Wong,et al. The calculation of posterior distributions by data augmentation , 1987 .
[3] L. Fahrmeir. Posterior Mode Estimation by Extended Kalman Filtering for Multivariate Dynamic Generalized Linear Models , 1992 .
[4] Eric R. Ziegel,et al. Multivariate Statistical Modelling Based on Generalized Linear Models , 2002, Technometrics.
[5] Nicholas G. Polson,et al. A Monte Carlo Approach to Nonnormal and Nonlinear State-Space Modeling , 1992 .
[6] Richard A. Davis,et al. Time Series: Theory and Methods , 2013 .
[7] G. Kitagawa. Non-Gaussian State—Space Modeling of Nonstationary Time Series , 1987 .
[8] B. Jørgensen,et al. A state-space model for multivariate longitudinal count data , 1999 .
[9] John Geweke,et al. Efficient Simulation from the Multivariate Normal and Student-t Distributions Subject to Linear Constraints and the Evaluation of Constraint Probabilities , 1991 .
[10] U. V. Naik-Nimbalkar,et al. Filtering and Smoothing via Estimating Functions , 1995 .
[11] C. Robert. Simulation of truncated normal variables , 2009, 0907.4010.
[12] David S. Stoffer,et al. A Walsh—Fourier Analysis of the Effects of Moderate Maternal Alcohol Consumption on Neonatal Sleep-State Cycling , 1988 .
[13] B. Jørgensen,et al. State‐space models for multivariate longitudinal data of mixed types , 1996 .