2D high-ordered nanoporous NiMoO4 for high-performance supercapacitors

Abstract 2D high-ordered nanocrystalline nanoporous NiMoO 4 has been synthesized by nanocasting from mesoporous silica SBA-15. The structure has been characterized by means of low and wide-angle powder X-ray diffraction (PXRD), transmission electron microscopy (TEM), BET, and BJH techniques, confirming formation of 2D high-ordered nanoporous structure of NiMoO 4 with high specific surface area (174 m 2  g −1 ), nanocrystalline walls (7–8 nm) and uniform pore size distribution (5.4 nm). The electrochemical properties of the nanoporous NiMoO 4 have been evaluated as electrode material for supercapacitor in a three-electrode configuration in aqueous 3 M KOH solution. The material exhibits superior electrochemical performance including high specific capacitance of 2351 F g −1 at 2 A g −1 , excellent rate capability (1080 F g −1 at 80 A g −1 ), excellent cycling stability in 6000 continuous cycles at different current densities (only 9.3% loss after 3000 cycles at 5 A g −1 ), and high energy and power densities (117.5 W h kg −1 in 0.6 kW kg −1 , and 54 W h kg −1 in 24 kW kg −1 ). The superior electrochemical performance of the 2D nanoporous NiMoO 4 electrode has been attributed to its structural features, including 2D highly ordered nanoporous structure which facilitates mass transfer and electrolyte accessibility, high specific surface area which provides more active sites for the pseudocapacitive reactions, and nanosized walls which shorten diffusion paths. These results reveal that the nanoporous NiMoO 4 is a promising candidate for high-performance supercapacitor electrode materials.

[1]  M. Anbia,et al.  Improving humidity sensing properties of nanoporous TiO2–10 mol% SnO2 thin film by co-doping with La3+ and K+ , 2011 .

[2]  K. Sing Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984) , 1985 .

[3]  Q. Li,et al.  Three-dimensional Co₃O₄@NiMoO₄ core/shell nanowire arrays on Ni foam for electrochemical energy storage. , 2014, ACS applied materials & interfaces.

[4]  Jun Chen,et al.  Highly conductive three-dimensional MnO2-carbon nanotube-graphene-Ni hybrid foam as a binder-free supercapacitor electrode. , 2014, Nanoscale.

[5]  Fredrickson,et al.  Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores , 1998, Science.

[6]  Jingguang G. Chen,et al.  Ordered mesoporous nickel cobaltite spinel with ultra-high supercapacitance , 2013 .

[7]  B. Liu,et al.  Enhanced performance of supercapacitors with ultrathin mesoporous NiMoO4 nanosheets , 2014 .

[8]  L. Kong,et al.  Design and synthesis of CoMoO4–NiMoO4·xH2O bundles with improved electrochemical properties for supercapacitors , 2013 .

[9]  X. Lou,et al.  Growth of ultrathin mesoporous Co3O4 nanosheet arrays on Ni foam for high-performance electrochemical capacitors , 2012 .

[10]  A. Manivannan,et al.  A reduced graphene oxide/Co3O4 composite for supercapacitor electrode , 2013 .

[11]  John Wang,et al.  Ordered mesoporous alpha-MoO3 with iso-oriented nanocrystalline walls for thin-film pseudocapacitors. , 2010, Nature materials.

[12]  B. Liu,et al.  Comparison of the electrochemical performance of NiMoO4 nanorods and hierarchical nanospheres for supercapacitor applications. , 2013, ACS applied materials & interfaces.

[13]  N. Yusof,et al.  Recent development in spinel cobaltites for supercapacitor application , 2015 .

[14]  G. Lu,et al.  Nitrogen‐Enriched Nonporous Carbon Electrodes with Extraordinary Supercapacitance , 2009 .

[15]  Ru‐Shi Liu,et al.  Mesoporous ZnCo2O4 nanoflakes with bifunctional electrocatalytic activities toward efficiencies of rechargeable lithium-oxygen batteries in aprotic media. , 2013, Nanoscale.

[16]  V. Meynen,et al.  Verified syntheses of mesoporous materials , 2009 .

[17]  Q. Li,et al.  NiMoO4 nanowires supported on Ni foam as novel advanced electrodes for supercapacitors , 2013 .

[18]  R. J. Kalbasi,et al.  The influence of different carbon sources in the carbothermal reduction and nitridation (CRN) synthesis of SiAlON from nanocomposite precursors based on Al-SBA-15 , 2013 .

[19]  M. Winter,et al.  What are batteries, fuel cells, and supercapacitors? , 2004, Chemical reviews.

[20]  J. Eckert,et al.  Functionalised porous nanocomposites: a multidisciplinary approach to investigate designed structures for supercapacitor applications , 2013 .

[21]  John R. Miller,et al.  Electrochemical Capacitors for Energy Management , 2008, Science.

[22]  Haixin Chang,et al.  Low-temperature solution-processable Ni(OH)2 ultrathin nanosheet/N-graphene nanohybrids for high-performance supercapacitor electrodes. , 2014, Nanoscale.

[23]  Gang Wang,et al.  Synthesis of TiO2 nanoparticles on mesoporous aluminosilicate Al-SBA-15 in supercritical CO2 for photocatalytic decolorization of methylene blue , 2013 .

[24]  Bei Wang,et al.  Highly ordered mesoporous cobalt oxide nanostructures: synthesis, characterisation, magnetic properties, and applications for electrochemical energy devices. , 2010, Chemistry.

[25]  X. Guo,et al.  Template-free and large-scale synthesis of hierarchical dandelion-like NiCo2O4 microspheres for high-performance supercapacitors , 2014 .

[26]  B. Liu,et al.  Facile hydrothermal synthesis of hierarchical ultrathin mesoporous NiMoO4 nanosheets for high performance supercapacitors , 2014 .

[27]  Weiwei Zhou,et al.  Hybrid structure of cobalt monoxide nanowire @ nickel hydroxidenitrate nanoflake aligned on nickel foam for high-rate supercapacitor , 2011 .

[28]  Y. Gogotsi,et al.  Materials for electrochemical capacitors. , 2008, Nature materials.

[29]  R. Selvan,et al.  Hydrothermal synthesis and electrochemical performances of 1.7 V NiMoO₄⋅xH₂O||FeMoO₄ aqueous hybrid supercapacitor. , 2014, Journal of colloid and interface science.

[30]  Youngjin Ye,et al.  Functional mesoporous materials for energy applications: solar cells, fuel cells, and batteries. , 2013, Nanoscale.

[31]  Genqiang Zhang,et al.  Controlled Growth of NiCo2O4 Nanorods and Ultrathin Nanosheets on Carbon Nanofibers for High-performance Supercapacitors , 2013, Scientific Reports.

[32]  M. El‐Kady,et al.  Laser Scribing of High-Performance and Flexible Graphene-Based Electrochemical Capacitors , 2012, Science.

[33]  Chang Liu,et al.  Advanced Materials for Energy Storage , 2010, Advanced materials.

[34]  R. Selvan,et al.  Nano α-NiMoO4 as a new electrode for electrochemical supercapacitors , 2013 .

[35]  Stuart H. Taylor,et al.  Total Oxidation of Naphthalene Using Mesoporous CeO2 Catalysts Synthesized by Nanocasting from Two Dimensional SBA-15 and Three Dimensional KIT-6 and MCM-48 Silica Templates , 2010 .

[36]  Alain Walcarius,et al.  Mesoporous materials and electrochemistry. , 2013, Chemical Society reviews.

[37]  S. E. Moosavifard,et al.  Facile synthesis of hierarchical CuO nanorod arrays on carbon nanofibers for high-performance supercapacitors , 2014 .

[38]  Xiaobo Ji,et al.  NiCo2O4-based materials for electrochemical supercapacitors , 2014 .

[39]  L. Zhuang,et al.  Noble fabrication of Ni–Mo cathode for alkaline water electrolysis and alkaline polymer electrolyte water electrolysis , 2014 .

[40]  Yun‐Sung Lee,et al.  Synthesis and improved electrochemical performances of nano β-NiMoO4–CoMoO4·xH2O composites for asymmetric supercapacitors , 2013 .

[41]  Yuxin Zhang,et al.  Hierarchical NiO nanoflake coated CuO flower core–shell nanostructures for supercapacitor , 2014 .

[42]  C. M. Li,et al.  Synthesis, Characterization, and Lithium Storage Capability of AMoO4 (A = Ni, Co) Nanorods† , 2010 .

[43]  L. Kong,et al.  Facile synthesis of NiMoO4·xH2O nanorods as a positive electrode material for supercapacitors , 2013 .

[44]  K. Liang,et al.  High-performance three-dimensional nanoporous NiO film as a supercapacitor electrode , 2012 .

[45]  B. Conway Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications , 1999 .

[46]  C. Das,et al.  Synthesis, characterization and electrochemical performance of graphene decorated with 1D NiMoO4 · nH2O nanorods. , 2013, Nanoscale.

[47]  Chi-Chang Hu,et al.  Cathodic deposition of Ni(OH)2 and Co(OH)2 for asymmetric supercapacitors: Importance of the electrochemical reversibility of redox couples , 2013 .

[48]  F. Kleitz,et al.  Hard templating pathways for the synthesis of nanostructured porous Co₃O₄ , 2007 .

[49]  J. M. Córdoba,et al.  Rapid synthesis of SBA-15 rods with variable lengths, widths, and tunable large pores. , 2011, Langmuir : the ACS journal of surfaces and colloids.

[50]  Jianjun Jiang,et al.  Rapid microwave-assisted synthesis NiMoO4·H2O nanoclusters for supercapacitors , 2013 .

[51]  Jiaoyang Li,et al.  Ultrathin Mesoporous NiCo2O4 Nanosheets Supported on Ni Foam as Advanced Electrodes for Supercapacitors , 2012 .

[52]  Lei Zhang,et al.  A review of electrode materials for electrochemical supercapacitors. , 2012, Chemical Society reviews.

[53]  C. Lokhande,et al.  One step hydrothermal synthesis of micro-belts like β-Ni(OH)2 thin films for supercapacitors , 2013 .