Chemical mass transfer in magmatic processes

Lasaga's (1982) Master Equation for crystal growth is solved for multicomponent systems in situations which allow for coupled diffusion of melt species. The structure of the solution is explored in some detail for the case of a constant diffusion coefficient matrix. Incorporating these results, the growth of plagioclase is modeled in undercooled tholeiitic melts by approximating interface growth rates with (1) a reduced growth rate function and with (2) calculated solid-liquid solution properties obtained from the silicate liquid solution model of Ghiorso et al. (1983; appendix of Ghiorso 1985). For this purpose algorithms are provided for estimating the liquidus temperature or the chemical affinity of a multicomponent solid solution precipitating from a complex melt of specified bulk composition. Compositional trends in initial solids produced by successive degrees of undercooling are opposite to those predicted in the binary system NaAlSi3O8-CaAl2Si2O8. Calculations suggest that the solid phase and interface melt compositions rapidly approach a “steady state” for a given degree of undercooling. Consequently, the overall isothermal growth rate of plagioclase forming from tholeiitic melts appears to be entirely diffusion controlled. In magmatic systems the multicomponent growth equations allow for the formation of oscillatory zoned crystals as a consequence of the “couplingr” between interface reaction kinetics and melt diffusion. The magnitude of this effect is largely dependent upon the asymmetry of the diffusion coefficient matrix. Methods are described to facilitate the calibration of diffusion matrices from experimental data on multicomponent penetration curves.Experimental results (Lesher and Walker 1986) on steady state Soret concentration profiles resulting from thermal diffusion in MORB and andesitic liquids are analyzed using the theory of multicomponent linear irreversible thermodynamics. Under conditions where the entropy production is minimized, a linear relationship is derived between liquid chemical potentials and temperature. This relationship is utilized to evaluate the validity of the solution model of Ghiorso et al. (1983) in melts up to 300° C above their liquidus. The results indicate that configurational entropies are accurately modeled for MORB and andesite bulk compositions. The modeling fails in two four-component systems tested. Equations are derived which allow the calibration of multicomponent regular solution parameters from steady state Soret arrays. An algorithm is demonstrated which permits the calculation of steady state Soret concentration profiles, given an overall bulk melt composition and temperature gradient. This algorithm uses the liquid solution properties of Ghiorso et al. (1983) and constants obtained from the experimental measurements of Lesher and Walker (1986).

[1]  H. Helgeson,et al.  Calculation of mass transfer among minerals and aqueous solutions as a function of time and surface area in geochemical processes. I. computational approach , 1983 .

[2]  R. A. Robie,et al.  High-temperature heat capacities of corundum, periclase, anorthite, CaAl 2 Si 2 O 8 glass, muscovite, pyrophyllite, KAlSi 3 O 8 glass, grossular, and NaAlSi 3 O 8 glass , 1979 .

[3]  P. E. Castro Compact Numerical Methods for Computers: Linear Algebra and Function Minimization , 1978 .

[4]  S. Morse,et al.  Igneous petrology , 1980, Nature.

[5]  S. Morse Basalts and Phase Diagrams: An Introduction to the Quantitative Use of Phase Diagrams in Igneous Petrology , 1980 .

[6]  T. Grove,et al.  Phase equilibrium controls on the tholeiitic versus calc‐alkaline differentiation trends , 1984 .

[7]  B. Skinner,et al.  Theoretical prediction of equilibrium phase assemblages in multicomponent systems , 1974 .

[8]  C. Lesher Effects of silicate liquid composition on mineral‐liquid element partitioning from Soret diffusion studies , 1986 .

[9]  A. Philpotts Silicate Liquid Immiscibility in Tholeiitic Basalts , 1979 .

[10]  T. Irvine,et al.  Source-rock compositions and depths of origin of Bushveld and Stillwater magmas , 1982 .

[11]  E. Erikson Petrology and petrogenesis of the Mount Stuart batholith — Plutonic equivalent of the high-alumina basalt association? , 1977 .

[12]  D. Walker,et al.  Solution properties of silicate liquids from thermal diffusion experiments , 1986 .

[13]  G. M. Brown,et al.  Layered Igneous Rocks , 1967 .

[14]  Milton Abramowitz,et al.  Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .

[15]  D. Walker,et al.  A small Soret effect in spreading center gabbros , 1984 .

[16]  I. Carmichael The Mineralogy of Thingmuli, a Tertiary Volcano in Eastern Iceland , 1967 .

[17]  I. Grossmann,et al.  Computation of phase and chemical equilibria , 1981 .

[18]  M. Ghiorso Activity/composition relations in the ternary feldspars , 1984 .

[19]  David Walker,et al.  Soret separation of mid-ocean ridge basalt magma , 1982 .

[20]  L. Onsager Reciprocal Relations in Irreversible Processes. II. , 1931 .

[21]  Mark S. Ghiorso,et al.  Oxidation-reduction relations in basic magma: a case for homogeneous equilibria , 1986 .

[22]  E. Watson,et al.  Diffusion in magmas at depth in the Earth: The effects of pressure and dissolved H2O , 1981 .

[23]  A. Buddington,et al.  Iron-Titanium Oxide Minerals and Synthetic Equivalents , 1964 .

[24]  H. S. Yoder,et al.  Contemporaneous basaltic and rhyolitic magmas , 1973 .

[25]  Motoaki Sato,et al.  Oxygen fugacity of basaltic magmas and the role of gas-forming elements , 1978 .

[26]  Warren D. Seider,et al.  Computation of Phase and Chemical Equilibrium: A Review , 1980 .

[27]  P. Schiffman,et al.  Dynamic Crystallization Studies on the Grande Ronde Pillow Basalts, Central Washington , 1982, The Journal of Geology.

[28]  D. Eric Crystal growth and nucleation theory and the numerical simulation of igneous crystallization , 1980 .

[29]  H. R. Shaw Viscosities of magmatic silicate liquids; an empirical method of prediction , 1972 .

[30]  A. Lasaga Toward a master equation in crystal growth , 1982 .

[31]  M. Ghiorso,et al.  Ferric-ferrous equilibria in natural silicate liquids at 1 bar , 1981 .

[32]  P. Mazur,et al.  Non-equilibrium thermodynamics, , 1963 .

[33]  M. Brearley,et al.  Dissolution Rates of Upper Mantle Minerals in an Alkali Basalt Melt at High Pressure: An Experimental Study and Implications for Ultramafic Xenolith Survival , 1986 .

[34]  C. J. Hostetler,et al.  Predicting major element mineral/melt equilibria - A statistical approach , 1980 .

[35]  J. Carron,et al.  Donnees experimentales sur la diffusion des elements majeurs entre verres ou liquides de compositions basaltique, rhyolitique et phonolitique, entre 900°C et 1300°C, a pression ordinaire , 1980 .

[36]  D. S. Korzhinskiĭ Physicochemical basis of the analysis of the paragenesis of minerals , 1959 .

[37]  M. Ghiorso,et al.  Chemical mass transfer in magmatic processes , 1985 .

[38]  M. Z. Stout,et al.  Heat effects of assimilation, crystallization, and vesiculation in magmas , 1982 .

[39]  J. T. Betts A Compact Algorithm for Computing the Stationary Point of a Quadratic Function Subject to Linear Constraints , 1980, TOMS.

[40]  R. Kirkpatrick Towards a kinetic model for the crystallization of magma bodies , 1976 .

[41]  H. Helgeson,et al.  Summary and critique of the thermodynamic properties of rock forming minerals , 1978 .

[42]  B. W. Evans,et al.  Mineralogy as a function of depth in the prehistoric Makaopuhi tholeiitic lava lake, Hawaii , 1968 .

[43]  E. Nisbet,et al.  The Mafic and Ultramafic Lavas of the Belingwe Greenstone Belt, Rhodesia , 1977 .

[44]  M. Dungan,et al.  Low pressure mineral-melt equilibria in natural anhydrous mafic systems , 1983 .

[45]  N. L. Bowen The melting phenomena of the plagioclase feldspars , 1913 .

[46]  H. Nathan,et al.  A Model of Magmatic Crystallization , 1978 .

[47]  D. Uhlmann,et al.  Rates and processes of crystal growth in the system anorthite-albite. [magmatic liquids in igneous rock formation] , 1979 .

[48]  P. Aagaard,et al.  Thermodynamic and kinetic constraints on reaction rates among minerals and aqueous solutions; I, Theoretical considerations , 1982 .

[49]  M. Rivers,et al.  The ferric-ferrous ratio of natural silicate liquids equilibrated in air , 1983 .

[50]  J. T. Betts Algorithm 559: The Stationary Point of a Quadratic Function Subject to Linear Constraints [E4] , 1980, TOMS.

[51]  I. Carmichael The Petrology of Thingmuli, a Tertiary Volcano in Eastern Iceland , 1964 .

[52]  Philip E. Gill,et al.  Practical optimization , 1981 .

[53]  A. Jambon Diffusion dans les silicates fondus : un bilan des connaissances actuelles , 1983 .

[54]  M. Reed,et al.  Calculation of multicomponent chemical equilibria and reaction processes in systems involving minerals, gases and an aqueous phase , 1982 .

[55]  R. Cawthorn.,et al.  Experimental data at 3 kbars pressure on parental magma to the Bushveld Complex , 1983 .

[56]  C. Langmuir,et al.  Calculating Mineral—Melt Equilibria with Stoichiometry, Mass Balance, and Single-Component Distribution Coefficients , 1981 .

[57]  C. Lesher,et al.  Soret Separation of Lunar Liquid , 1981 .

[58]  M. Ghiorso,et al.  The Gibbs free energy of mixing of natural silicate liquids; an expanded regular solution approximation for the calculation of magmatic intensive variables , 1983 .

[59]  Alexander Graham,et al.  Kronecker Products and Matrix Calculus: With Applications , 1981 .

[60]  I. Carmichael,et al.  Silica activity and Ptotal in igneous rocks , 1971 .

[61]  E. F. Osborn Role of oxygen pressure in the crystallization and differentiation of basaltic magma , 1959 .

[62]  Z. Haq,et al.  Diffusion in multicomponent metallic systems. VI. Some thermodynamic properties of the D matrix and the corresponding solutions of the diffusion equations , 1963 .

[63]  H. Helgeson,et al.  Evaluation of irreversible reactions in geochemical processes involving minerals and aqueous solutions - I. Thermodynamic relations , 1968 .

[64]  F. Brown,et al.  Quaternary volcanoes of the Lake Rudolf region: II. The lavas of North Island, South Island and the Barrier , 1971 .

[65]  R. Kirkpatrick,et al.  Crystal growth from the melt: A review , 1975 .

[66]  N. L. Bowen Diffusion in Silicate Melts , 1921, The Journal of Geology.

[67]  J. Stebbins,et al.  The partial molar volume of Fe2O3 in multicomponent silicate liquids and the pressure dependence of oxygen fugacity in magmas , 1982, Mineralogical Magazine.

[68]  James B. Thompson Geochemical reaction and open systems , 1970 .

[69]  G. Eriksson,et al.  Theoretical Computation of Mineral Assemblages in Pyrolite and Lherzolite , 1983 .

[70]  M. R. Sharpe Melting relations of two Bushveld chilled margin rocks and implications for the origin of chromitite. , 1983 .

[71]  D. Uhlmann,et al.  Solute redistribution during crystallization at constant velocity and constant temperature , 1974 .

[72]  Richard F. Sincovec,et al.  Software for Nonlinear Partial Differential Equations , 1975, TOMS.

[73]  A. L. Smith,et al.  Quaternary lavas from the southern Cascades, western U.S.A. , 1968 .

[74]  L. Barron Programs for calculating the geometry of multicomponent exsolution , 1983 .

[75]  R. Arculus,et al.  Intrinsic oxygen fugacity measurements: techniques and results for spinels from upper mantle peridotites and megacryst assemblages , 1981 .

[76]  J. Stebbins,et al.  Heat capacities and entropies of silicate liquids and glasses , 1984 .

[77]  H. Cullinan,et al.  Analysis of Flux Equations of Multicomponent Diffusion , 1965 .

[78]  G. A. Medford Calcium Diffusion in a Mugearite Melt , 1973 .

[79]  T. Irvine,et al.  The J-M platinum-palladium reef of the Stillwater Complex, Montana; II, Origin by double-diffusive convective magma mixing and implications for the Bushveld Complex , 1983 .

[80]  Thomas A. Jones,et al.  Calculation of mass transfer in geochemical processes involving aqueous solutions , 1970 .

[81]  M. M. Kimberley SOLVUS: A FORTRAN IV program to calculate solvi for binary isostructural crystalline solutions , 1980 .

[82]  N. L. Bowen The Behavior of Inclusions in Igneous Magmas , 1922, The Journal of Geology.

[83]  LSEQIEQ: a FORTRAN IV subroutine package for the analysis of multiple linear regression problems with possibly deficient pseudorank and linear equality and inequality constraints , 1983 .

[84]  L. Barron The calculated geometry of silicate liquid immiscibility , 1981 .

[85]  L. E. Scriven,et al.  Interactions of reaction and diffusion in open systems , 1969 .

[86]  I. Carmichael Natural liquids and the phonolitic minimum , 1964 .

[87]  C. E. Tilley,et al.  Origin of Basalt Magmas: An Experimental Study of Natural and Synthetic Rock Systems , 1962 .

[88]  M. R. Sharpe The chronology of magma influxes to the eastern compartment of the Bushveld Complex as exemplified by its marginal border groups , 1981, Journal of the Geological Society.

[89]  I. Carmichael The iron-titanium oxides of salic volcanic rocks and their associated ferromagnesian silicates , 1966 .