Hyperspectral canopy sensing of paddy rice aboveground biomass at different growth stages

[1]  Penghuan Liu,et al.  A preliminary precision rice management system for increasing both grain yield and nitrogen use efficiency , 2013 .

[2]  Y. Miao,et al.  Estimating rice nitrogen status with the Crop Circle multispectral active canopy sensor , 2013 .

[3]  Shanyu Huang,et al.  Non-destructive estimation of rice plant nitrogen status with Crop Circle multispectral active canopy sensor , 2013 .

[4]  Fei Li,et al.  Comparing hyperspectral index optimization algorithms to estimate aerial N uptake using multi-temporal winter wheat datasets from contrasting climatic and geographic zones in China and Germany , 2013 .

[5]  Georg Bareth,et al.  Remotely detecting canopy nitrogen concentration and uptake of paddy rice in the Northeast China Plain , 2013 .

[6]  Susan L. Ustin,et al.  Derivation of phenological metrics by function fitting to time-series of Spectral Shape Indexes AS1 and AS2: Mapping cotton phenological stages using MODIS time series , 2012 .

[7]  Fei Li,et al.  Remotely estimating aerial N status of phenologically differing winter wheat cultivars grown in contrasting climatic and geographic zones in China and Germany , 2012 .

[8]  Shanyu Huang,et al.  Active canopy sensor-based precision N management strategy for rice , 2012, Agronomy for Sustainable Development.

[9]  Weixing Cao,et al.  Estimating leaf nitrogen concentration with three-band vegetation indices in rice and wheat , 2012 .

[10]  Xiang-Dong Liu,et al.  Hyperspectral detection of rice damaged by rice leaf folder (Cnaphalocrocis medinalis) , 2012 .

[11]  Y. Miao,et al.  Quantifying spatial variability of indigenous nitrogen supply for precision nitrogen management in small scale farming , 2012, Precision Agriculture.

[12]  S. B. Phillips,et al.  Estimating Rice Grain Yield Potential Using Normalized Difference Vegetation Index , 2011 .

[13]  Anatoly A. Gitelson,et al.  Application of chlorophyll-related vegetation indices for remote estimation of maize productivity , 2011 .

[14]  J. Lofton,et al.  Relationships of Spectral Vegetation Indices with Rice Biomass and Grain Yield at Different Sensor View Angles , 2011 .

[15]  Hao Hu,et al.  Estimation of rice neck blasts severity using spectral reflectance based on BP-neural network , 2011, Acta Physiologiae Plantarum.

[16]  Jingfeng Huang,et al.  Application of neural networks to discriminate fungal infection levels in rice panicles using hyperspectral reflectance and principal components analysis , 2010 .

[17]  Georg Bareth,et al.  Evaluating hyperspectral vegetation indices for estimating nitrogen concentration of winter wheat at different growth stages , 2010, Precision Agriculture.

[18]  John H. Prueger,et al.  Value of Using Different Vegetative Indices to Quantify Agricultural Crop Characteristics at Different Growth Stages under Varying Management Practices , 2010, Remote. Sens..

[19]  Nicolas Tremblay,et al.  Strategies to Make Use of Plant Sensors-Based Diagnostic Information for Nitrogen Recommendations , 2009 .

[20]  Dennis Normile,et al.  Reinventing Rice to Feed the World , 2008, Science.

[21]  M. Jeuffroy,et al.  Diagnosis tool for plant and crop N status in vegetative stage Theory and practices for crop N management , 2008 .

[22]  Fumin Wang,et al.  Identification of optimal hyperspectral bands for estimation of rice biophysical parameters. , 2008, Journal of integrative plant biology.

[23]  Fei Li,et al.  Estimating N status of winter wheat using a handheld spectrometer in the North China Plain , 2008 .

[24]  H. J. Heege,et al.  Prospects and results for optical systems for site-specific on-the-go control of nitrogen-top-dressing in Germany , 2008, Precision Agriculture.

[25]  Lu Xianguo,et al.  Cumulative effects of different cultivating patterns on properties of albic soil in Sanjiang Plain , 2006 .

[26]  M. A. Moreira,et al.  Hyperspectral field reflectance measurements to estimate wheat grain yield and plant height , 2006 .

[27]  Jiaguo Qi,et al.  Identifying optimal spectral bands from in situ measurements of Great Lakes coastal wetlands using second-derivative analysis , 2005 .

[28]  Rong-Kuen Chen,et al.  Modeling Rice Growth with Hyperspectral Reflectance Data , 2004 .

[29]  M. Ashton,et al.  Accuracy assessments of hyperspectral waveband performance for vegetation analysis applications , 2004 .

[30]  Junichi Imanishi,et al.  Detecting drought status and LAI of two Quercus species canopies using derivative spectra , 2004 .

[31]  John R. Miller,et al.  Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture , 2004 .

[32]  Tim R. McVicar,et al.  Current and potential uses of optical remote sensing in rice-based irrigation systems: a review , 2004 .

[33]  J. Schjoerring,et al.  Reflectance measurement of canopy biomass and nitrogen status in wheat crops using normalized difference vegetation indices and partial least squares regression , 2003 .

[34]  T. Reeves,et al.  The Cereal of the World's Poor Takes Center Stage , 2002, Science.

[35]  Yong-xing Yang,et al.  Effects of agriculture reclamation on the hydrologic characteristics in the Sanjiang Plain, China , 2001 .

[36]  T. Kobayashi,et al.  Detection of rice panicle blast with multispectral radiometer and the potential of using airborne multispectral scanners. , 2001, Phytopathology.

[37]  P. Thenkabail,et al.  Hyperspectral Vegetation Indices and Their Relationships with Agricultural Crop Characteristics , 2000 .

[38]  R. Lawrence,et al.  Comparisons among vegetation indices and bandwise regression in a highly disturbed, heterogeneous landscape : Mount St. Helens, Washington , 1998 .

[39]  Fuan Tsai,et al.  Derivative analysis of hyperspectral data , 1996, Remote Sensing.

[40]  G. Rondeaux,et al.  Optimization of soil-adjusted vegetation indices , 1996 .

[41]  A. Huete,et al.  A Modified Soil Adjusted Vegetation Index , 1994 .

[42]  M. Shikada,et al.  Effects of solar and view angles on reflectance for paddy field canopies , 1992 .

[43]  Michael D. Steven,et al.  High resolution derivative spectra in remote sensing , 1990 .

[44]  M. Shibayama,et al.  Seasonal visible, near-infrared and mid-infrared spectra of rice canopies in relation to LAI and above-ground dry phytomass , 1989 .

[45]  A. Huete A soil-adjusted vegetation index (SAVI) , 1988 .

[46]  M. Shibayama,et al.  A spectroradiometer for field use. III. A comparison of some vegetation indices for predicting luxuriant paddy rice biomass. , 1986 .

[47]  N. K. Patel,et al.  Spectral response of rice crop and its relation to yield and yield attributes , 1985 .

[48]  H. Gausman,et al.  LEAF REFLECTANCE OF NEAR-INFRARED , 1974 .

[49]  C. Jordan Derivation of leaf-area index from quality of light on the forest floor , 1969 .

[50]  Jean. Steinier,et al.  Smoothing and differentiation of data by simplified least square procedure. , 1964, Analytical chemistry.

[51]  Georg Bareth,et al.  Analysis of crop reflectance for estimating biomass in rice canopies at different phenological stages , 2013 .

[52]  P. Rubino,et al.  Precision nitrogen management of wheat. A review , 2012, Agronomy for Sustainable Development.

[53]  Georg Bareth,et al.  ESTIMATING WINTER WHEAT BIOMASS AND NITROGEN STATUS USING AN ACTIVE CROP SENSOR , 2010 .

[54]  Yuxin Miao,et al.  Combining chlorophyll meter readings and high spatial resolution remote sensing images for in-season site-specific nitrogen management of corn , 2008, Precision Agriculture.

[55]  Huang Jingfeng,et al.  Change Law of Hyperspectral Data in Related with Chlorophyll and Carotenoid in Rice at Different Developmental Stages , 2004 .

[56]  J. Goudriaan,et al.  Monitoring rice reflectance at field level for estimating biomass and LAI , 1998 .

[57]  Moon S. Kim,et al.  The use of high spectral resolution bands for estimating absorbed photosynthetically active radiation (A par) , 1994 .

[58]  R. Martin,et al.  Spectral reflectance patterns of flooded rice , 1986 .

[59]  J. A. Schell,et al.  Monitoring vegetation systems in the great plains with ERTS , 1973 .