Rate-distortion modeling for multiscale binary shape coding based on Markov random fields

The purpose of this paper it to explore the relationship between the rate-distortion characteristics of multiscale binary shape and Markov random field (MRF) parameters. For coding, it is important that the input parameters that will be used to define this relationship be able to distinguish between the same shape at different scales, as well as different shapes at the same scale. We consider an MRF model, referred to as the Chien model, which accounts for high-order spatial interactions among pixels. We propose to use the statistical moments of the Chien model as input to a neural network to accurately predict the rate and distortion of the binary shape when coded at various scales.

[1]  Bernard Chalmond,et al.  Contextual performance prediction for low-level image analysis algorithms , 2001, IEEE Trans. Image Process..

[2]  D. Signorini,et al.  Neural networks , 1995, The Lancet.

[3]  Jorma Rissanen,et al.  Applications of universal context modeling to lossless compression of gray-scale images , 1995, Conference Record of The Twenty-Ninth Asilomar Conference on Signals, Systems and Computers.

[4]  Robert D. Nowak,et al.  Wavelet-based statistical signal processing using hidden Markov models , 1998, IEEE Trans. Signal Process..

[5]  Anthony Vetro,et al.  MPEG-4 rate control for multiple video objects , 1999, IEEE Trans. Circuits Syst. Video Technol..

[6]  Joan L. Mitchell,et al.  JPEG: Still Image Data Compression Standard , 1992 .

[7]  Aggelos K. Katsaggelos,et al.  MPEG-4 and rate-distortion-based shape-coding techniques , 1998, Proc. IEEE.

[8]  Hsueh-Ming Hang,et al.  Source model for transform video coder and its application. I. Fundamental theory , 1997, IEEE Trans. Circuits Syst. Video Technol..

[9]  Charles A. Bouman,et al.  A multiscale random field model for Bayesian image segmentation , 1994, IEEE Trans. Image Process..

[10]  Information technology — Coding of audio-visual objects — Part 3 : Audio Technologies de l ' information — Codage des objets audiovisuels — Partie , 1999 .

[11]  Iso/iec 14496-2 Information Technology — Coding of Audio-visual Objects — Part 2: Visual , .

[12]  J. Meditch,et al.  Applied optimal control , 1972, IEEE Transactions on Automatic Control.

[13]  Alan S. Willsky,et al.  Multiscale Autoregressive Models and Wavelets , 1999, IEEE Trans. Inf. Theory.

[14]  Tihao Chiang,et al.  A new rate control scheme using quadratic rate distortion model , 1997, IEEE Trans. Circuits Syst. Video Technol..

[15]  J. Besag Spatial Interaction and the Statistical Analysis of Lattice Systems , 1974 .

[16]  Tony R. Martinez,et al.  Digital Neural Networks , 1988, Proceedings of the 1988 IEEE International Conference on Systems, Man, and Cybernetics.

[17]  Donald Geman,et al.  Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[18]  Nasir D. Memon,et al.  Context-based, adaptive, lossless image coding , 1997, IEEE Trans. Commun..

[19]  Anil K. Jain,et al.  Random field models in image analysis , 1989 .

[20]  Robert D. Nowak,et al.  Multiscale Modeling and Estimation of Poisson Processes with Application to Photon-Limited Imaging , 1999, IEEE Trans. Inf. Theory.

[21]  Anthony Vetro,et al.  A probabilistic approach for rate-distortion modeling of multiscale binary shape , 2002, 2002 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[22]  Chia-Hsu Kuo,et al.  Data compression on multifont Chinese character patterns , 1994, IEEE Trans. Image Process..

[23]  Carlos F. Borges On the Estimation of Markov Random Field Parameters , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[24]  W. Clem Karl,et al.  Multiscale representations of Markov random fields , 1993, IEEE Trans. Signal Process..

[25]  Noel Brady MPEG-4 standardized methods for the compression of arbitrarily shaped video objects , 1999, IEEE Trans. Circuits Syst. Video Technol..

[26]  Anil K. Jain,et al.  Markov Random Field Texture Models , 1983, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[27]  Haluk Derin,et al.  Modeling and Segmentation of Noisy and Textured Images Using Gibbs Random Fields , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[28]  Josiane Zerubia,et al.  Estimation of Markov random field prior parameters using Markov chain Monte Carlo maximum likelihood , 1999, IEEE Trans. Image Process..