Intermittent-hypoxia induced autophagy attenuates contractile dysfunction and myocardial injury in rat heart.

[1]  Jun Ren,et al.  Obstructive sleep apnoea and cardiovascular complications: perception versus knowledge , 2012, Clinical and experimental pharmacology & physiology.

[2]  K. Inoki,et al.  AMPK and mTOR in cellular energy homeostasis and drug targets. , 2012, Annual review of pharmacology and toxicology.

[3]  N. Wei,et al.  COP9 Signalosome Regulates Autophagosome Maturation , 2011, Circulation.

[4]  Catherine Theodoropoulos,et al.  New approaches in small animal echocardiography: imaging the sounds of silence. , 2011, American journal of physiology. Heart and circulatory physiology.

[5]  A. Ukimura,et al.  Inhalation of hydrogen gas attenuates left ventricular remodeling induced by intermittent hypoxia in mice. , 2011, American journal of physiology. Heart and circulatory physiology.

[6]  M. Seishima,et al.  The role of autophagy emerging in postinfarction cardiac remodelling. , 2011, Cardiovascular research.

[7]  J. Robbins,et al.  Atg7 Induces Basal Autophagy and Rescues Autophagic Deficiency in CryABR120G Cardiomyocytes , 2011, Circulation research.

[8]  S. Quan,et al.  Association of Incident Cardiovascular Disease With Progression of Sleep-Disordered Breathing , 2011, Circulation.

[9]  K. Philipson,et al.  The Na+/Ca2+ exchanger-1 mediates left ventricular dysfunction in mice with chronic intermittent hypoxia. , 2010, Journal of applied physiology.

[10]  R. Gottlieb,et al.  Autophagy in health and disease. 5. Mitophagy as a way of life. , 2010, American journal of physiology. Cell physiology.

[11]  Chang Hwa Jung,et al.  mTOR regulation of autophagy , 2010, FEBS letters.

[12]  N. Mizushima,et al.  Methods in Mammalian Autophagy Research , 2010, Cell.

[13]  Markus R. Wenk,et al.  Dual Role of 3-Methyladenine in Modulation of Autophagy via Different Temporal Patterns of Inhibition on Class I and III Phosphoinositide 3-Kinase* , 2010, The Journal of Biological Chemistry.

[14]  B. Rothermel,et al.  Autophagy in Hypertensive Heart Disease* , 2010, The Journal of Biological Chemistry.

[15]  K. Philipson,et al.  The Na /Ca exchanger-1 mediates left ventricular dysfunction in mice with chronic intermittent hypoxia , 2010 .

[16]  K. Philipson,et al.  The Na / Ca 2 exchanger-1 mediates left ventricular dysfunction in mice with chronic intermittent hypoxia , 2010 .

[17]  D. Fingar,et al.  mTOR Ser-2481 Autophosphorylation Monitors mTORC-specific Catalytic Activity and Clarifies Rapamycin Mechanism of Action* , 2009, The Journal of Biological Chemistry.

[18]  N. Sundaresan,et al.  Exogenous NAD Blocks Cardiac Hypertrophic Response via Activation of the SIRT3-LKB1-AMP-activated Kinase Pathway* , 2009, The Journal of Biological Chemistry.

[19]  Stephen H. Smith,et al.  Chronic intermittent hypoxia increases left ventricular contractility in C57BL/6J mice. , 2009, Journal of applied physiology.

[20]  M. Seishima,et al.  Functional significance and morphological characterization of starvation-induced autophagy in the adult heart. , 2009, The American journal of pathology.

[21]  Jianyun Yan,et al.  Adriamycin-induced autophagic cardiomyocyte death plays a pathogenic role in a rat model of heart failure. , 2009, International journal of cardiology.

[22]  K. Nagao,et al.  Morphological and biochemical characterization of basal and starvation-induced autophagy in isolated adult rat cardiomyocytes. , 2008, American journal of physiology. Heart and circulatory physiology.

[23]  K. Otsu,et al.  Crosstalk Between Autophagy and Apoptosis in Heart Disease , 2008, Circulation research.

[24]  E. Benjamin,et al.  Left Ventricular Morphology and Systolic Function in Sleep-Disordered Breathing: The Sleep Heart Health Study , 2008, Circulation.

[25]  Chengqun Huang,et al.  A method to measure cardiac autophagic flux in vivo , 2008, Autophagy.

[26]  Masaaki Komatsu,et al.  Homeostatic Levels of p62 Control Cytoplasmic Inclusion Body Formation in Autophagy-Deficient Mice , 2007, Cell.

[27]  J. Richardson,et al.  Cardiac autophagy is a maladaptive response to hemodynamic stress. , 2007, The Journal of clinical investigation.

[28]  Yasushi Matsumura,et al.  The role of autophagy in cardiomyocytes in the basal state and in response to hemodynamic stress , 2007, Nature Medicine.

[29]  W. T. McNicholas,et al.  Sleep apnoea as an independent risk factor for cardiovascular disease: current evidence, basic mechanisms and research priorities , 2006, European Respiratory Journal.

[30]  H. Ushikoshi,et al.  Autophagic cardiomyocyte death in cardiomyopathic hamsters and its prevention by granulocyte colony-stimulating factor. , 2006, The American journal of pathology.

[31]  David Carling,et al.  Thr2446 Is a Novel Mammalian Target of Rapamycin (mTOR) Phosphorylation Site Regulated by Nutrient Status* , 2004, Journal of Biological Chemistry.

[32]  D. Levy,et al.  Natural History of Asymptomatic Left Ventricular Systolic Dysfunction in the Community , 2003, Circulation.

[33]  Jeffrey L. Anderson,et al.  Left ventricular hypertrophy is a common echocardiographic abnormality in severe obstructive sleep apnea and reverses with nasal continuous positive airway pressure. , 2003, Chest.

[34]  E. Fletcher,et al.  highlighted topics Physiological and Genomic Consequences of Intermittent Hypoxia Invited Review: Physiological consequences of intermittent hypoxia: systemic blood pressure , 2001 .