A data fusion approach to optimize compositional stability of halide perovskites

[1]  C. Brabec,et al.  Robot-Based High-Throughput Screening of Antisolvents for Lead Halide Perovskites , 2020 .

[2]  Isaac Tamblyn,et al.  Crystal Site Feature Embedding Enables Exploration of Large Chemical Spaces , 2020 .

[3]  P. Clancy,et al.  Cost-effective materials discovery: Bayesian optimization across multiple information sources , 2020, Materials Horizons.

[4]  L. Herz,et al.  Preventing phase segregation in mixed-halide perovskites: a perspective , 2020, Energy & Environmental Science.

[5]  Reiner Sebastian Sprick,et al.  A mobile robotic chemist , 2020, Nature.

[6]  M. Ziatdinov,et al.  Chemical Robotics Enabled Exploration of Stability and Photoluminescent Behavior in Multicomponent Hybrid Perovskites via Machine Learning , 2020 .

[7]  Robert W. Epps,et al.  Artificial Chemist: An Autonomous Quantum Dot Synthesis Bot , 2020, Advanced materials.

[8]  Hieu A. Doan,et al.  Quantum Chemistry-Informed Active Learning to Accelerate the Design and Discovery of Sustainable Energy Storage Materials , 2020, Chemistry of Materials.

[9]  Paul J. Dauenhauer,et al.  Catalysis-in-a-Box: Robotic Screening of Catalytic Materials in the Time of COVID-19 and Beyond , 2020, Matter.

[10]  Zachary W. Ulissi,et al.  Accelerated discovery of CO2 electrocatalysts using active machine learning , 2020, Nature.

[11]  Hyungjun Kim,et al.  Thermodynamics of Multicomponent Perovskites: A Guide to Highly Efficient and Stable Solar Cell Materials , 2020 .

[12]  E. Sargent,et al.  Machine-Learning-Accelerated Perovskite Crystallization , 2020, Matter.

[13]  Jacqueline M Cole,et al.  A Design-to-Device Pipeline for Data-Driven Materials Discovery. , 2020, Accounts of chemical research.

[14]  H. Hillhouse,et al.  Forecasting the Decay of Hybrid Perovskite Performance Using Optical Transmittance or Reflected Dark-Field Imaging , 2020, ACS Energy Letters.

[15]  Andrew H. Proppe,et al.  Multi-cation perovskites prevent carrier reflection from grain surfaces , 2020, Nature Materials.

[16]  Kai Zhu,et al.  Consensus statement for stability assessment and reporting for perovskite photovoltaics based on ISOS procedures , 2020, Nature Energy.

[17]  Brian A. Rohr,et al.  Benchmarking the acceleration of materials discovery by sequential learning† , 2019, Chemical science.

[18]  P. F. Méndez,et al.  Chemi-Structural Stabilization of Formamidinium Lead Iodide Perovskite by Using Embedded Quantum Dots , 2019, ACS Energy Letters.

[19]  A. Aspuru-Guzik,et al.  Self-driving laboratory for accelerated discovery of thin-film materials , 2019, Science Advances.

[20]  Ian M. Pendleton,et al.  Robot-Accelerated Perovskite Investigation and Discovery (RAPID): 1. Inverse Temperature Crystallization , 2019 .

[21]  Dierk Raabe,et al.  High-entropy alloys , 2019, Nature Reviews Materials.

[22]  Michael Saliba Polyelemental, Multicomponent Perovskite Semiconductor Libraries through Combinatorial Screening , 2019, Proceedings of the International Conference on Perovskite Thin Film Photovoltaics and Perovskite Photonics and Optoelectronics.

[23]  Anuj Kumar Goyal,et al.  Insights into operational stability and processing of halide perovskite active layers , 2019, Energy & Environmental Science.

[24]  Ying Shirley Meng,et al.  Homogenized halides and alkali cation segregation in alloyed organic-inorganic perovskites , 2019, Science.

[25]  Rongrong Cheacharoen,et al.  Understanding Degradation Mechanisms and Improving Stability of Perovskite Photovoltaics. , 2018, Chemical reviews.

[26]  Anuj Kumar Goyal,et al.  Origin of Pronounced Nonlinear Band Gap Behavior in Lead-Tin Hybrid Perovskite Alloys , 2018 .

[27]  T. Buonassisi,et al.  Promises and challenges of perovskite solar cells , 2017, Science.

[28]  Qingmin Ji,et al.  Bismuth Incorporation Stabilized α-CsPbI3 for Fully Inorganic Perovskite Solar Cells , 2017 .

[29]  A. Tiihonen,et al.  Long term stability of air processed inkjet infiltrated carbon-based printed perovskite solar cells under intense ultra-violet light soaking , 2017 .

[30]  Zhixin Chen,et al.  Phosphorus-Based Alloy Materials for Advanced Potassium-Ion Battery Anode. , 2017, Journal of the American Chemical Society.

[31]  Merve Özkan,et al.  Air Processed Inkjet Infiltrated Carbon Based Printed Perovskite Solar Cells with High Stability and Reproducibility , 2017 .

[32]  Xiaoning Qian,et al.  Accelerated search for BaTiO3-based piezoelectrics with vertical morphotropic phase boundary using Bayesian learning , 2016, Proceedings of the National Academy of Sciences.

[33]  Ryan P. Adams,et al.  Design of efficient molecular organic light-emitting diodes by a high-throughput virtual screening and experimental approach. , 2016, Nature materials.

[34]  Anders Hagfeldt,et al.  Exploration of the compositional space for mixed lead halogen perovskites for high efficiency solar cells , 2016 .

[35]  Anders Hagfeldt,et al.  Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c5ee03874j Click here for additional data file. , 2016, Energy & environmental science.

[36]  Stefano de Gironcoli,et al.  Reproducibility in density functional theory calculations of solids , 2016, Science.

[37]  J. Berry,et al.  Stabilizing Perovskite Structures by Tuning Tolerance Factor: Formation of Formamidinium and Cesium Lead Iodide Solid-State Alloys , 2016 .

[38]  Neil D. Lawrence,et al.  Batch Bayesian Optimization via Local Penalization , 2015, AISTATS.

[39]  Geoffrey E. Hinton,et al.  Deep Learning , 2015, Nature.

[40]  Young Chan Kim,et al.  Compositional engineering of perovskite materials for high-performance solar cells , 2015, Nature.

[41]  Anthony K. Cheetham,et al.  Solid-state principles applied to organic–inorganic perovskites: new tricks for an old dog , 2014 .

[42]  Jasper Snoek,et al.  Bayesian Optimization with Unknown Constraints , 2014, UAI.

[43]  David L. Olmsted,et al.  Efficient stochastic generation of special quasirandom structures , 2013 .

[44]  Mercouri G Kanatzidis,et al.  Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties. , 2013, Inorganic chemistry.

[45]  Marco Buongiorno Nardelli,et al.  The high-throughput highway to computational materials design. , 2013, Nature materials.

[46]  A. Xiang,et al.  Growth and characterization of a PbI2 single crystal used for gamma ray detectors , 2007 .

[47]  G. Ceder,et al.  The Alloy Theoretic Automated Toolkit: A User Guide , 2002, cond-mat/0212159.

[48]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[49]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[50]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[51]  Ferreira,et al.  Special quasirandom structures. , 1990, Physical review letters.

[52]  H. Monkhorst,et al.  "Special points for Brillouin-zone integrations"—a reply , 1977 .

[53]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .