AKARI Near-Infrared Spectroscopy: Detection of H2O and CO2 Ices toward Young Stellar Objects in the Large Magellanic Cloud
暂无分享,去创建一个
H. Kaneda | T. Onaka | Y. Ita | A. Kawamura | I. Sakon | T. Shimonishi | D. Kato
[1] Tokyo,et al. AKARI IRC Survey of the Large Magellanic Cloud: Outline of the Survey and Initial Results , 2008, 0808.3022.
[2] Linda J. Smith,et al. SPITZER SAGE SURVEY OF THE LARGE MAGELLANIC CLOUD. III. STAR FORMATION AND ∼1000 NEW CANDIDATE YOUNG STELLAR OBJECTS , 2008 .
[3] D. Padgett,et al. The c2d Spitzer Spectroscopic Survey of Ices around Low-Mass Young Stellar Objects. I. H2O and the 5-8 μm Bands , 2007, 0711.4616.
[4] V. Pirronello,et al. Laboratory Simulation of Competition between Hydrogenation and Photolysis in the Chemical Evolution of H2O-CO Ice Mixtures , 2007 .
[5] Munetaka Ueno,et al. Near-Infrared and Mid-Infrared Spectroscopy with the Infrared Camera (IRC) for AKARI , 2007, 0708.4290.
[6] S. Oh,et al. The infrared astronomical mission AKARI , 2007, 0708.1796.
[7] D. Kato. The IRSF Magellanic Clouds Point Source Catalog , 2007 .
[8] N. Takeyama,et al. The Infrared Camera (IRC) for AKARI–Design and Imaging Performance , 2007, 0705.4144.
[9] E. Bergin,et al. The Abundance of Carbon Dioxide Ice in the Quiescent Intracloud Medium , 2007 .
[10] H. Fraser,et al. Effects of CO2 on H2O band profiles and band strengths in mixed H2O:CO2 ices , 2006, astro-ph/0610751.
[11] Linda J. Smith,et al. SPITZER SURVEY OF THE LARGE MAGELLANIC CLOUD, SURVEYING THE AGENTS OF A GALAXY'S EVOLUTION (SAGE). IV. DUST PROPERTIES IN THE INTERSTELLAR MEDIUM , 2005, Proceedings of the International Astronomical Union.
[12] H. Kaneda,et al. The Properties of the Mid- to Far-Infrared Emission in the Large Magellanic Cloud , 2006 .
[13] J. Blommaert,et al. ESO–VLT and Spitzer spectroscopy of IRAS 05328−6827: a massive young stellar object in the Large Magellanic Cloud , 2005, astro-ph/0509695.
[14] R. Indebetouw,et al. Two-Dimensional Radiative Transfer in Protostellar Envelopes. III. Effects of Stellar Temperature , 2004 .
[15] A. Tielens,et al. Interstellar Ice: The Infrared Space Observatory Legacy , 2004 .
[16] D. Alves,et al. A review of the distance and structure of the Large Magellanic Cloud , 2003, astro-ph/0310673.
[17] S. Meyer,et al. The Spectrum of Integrated Millimeter Flux of the Magellanic Clouds and 30 Doradus from TopHat and DIRBE Data , 2003, astro-ph/0306425.
[18] A. Tielens,et al. Detection of strongly processed ice in the central starburst of NGC 4945 , 2003, astro-ph/0302568.
[19] J. Chiar,et al. Solid Carbon Dioxide in Regions of Low-Mass Star Formation , 2001 .
[20] E. Herbst,et al. New models of interstellar gas–grain chemistry – III. Solid CO2 , 2001 .
[21] S. Sandford,et al. H, C, N, and O Isotopic Substitution Studies of the 2165 Wavenumber (4.62 Micron) “XCN” Feature Produced by Ultraviolet Photolysis of Mixed Molecular Ices , 2000 .
[22] Alexander G. G. M. Tielens,et al. An Inventory of Interstellar Ices toward the Embedded Protostar W33A , 2000 .
[23] P. Ehrenfreund,et al. ISO observations of interstellar ices: Implications for the pristinity of comets , 2000 .
[24] T. Prusti,et al. Observations of Solid Carbon Dioxide in Molecular Clouds with the Infrared Space Observatory , 1999 .
[25] E. Bergin,et al. Formation of Interstellar Ices behind Shock Waves , 1998, astro-ph/9811228.
[26] A. Tielens,et al. Processing of Icy Mantles in Protostellar Envelopes , 1998, The Astrophysical journal.
[27] W. Gieren,et al. Magellanic Cloud Cepheids: Abundances , 1998 .
[28] E. F. Dishoeck,et al. Chemical evolution of star-forming regions. , 1998, Annual review of astronomy and astrophysics.
[29] T. Graauw,et al. Carbon Monoxide in the Magellanic Clouds , 1986 .