New High-Resolution Semi-discrete Central Schemes for Hamilton—Jacobi Equations
暂无分享,去创建一个
[1] Chi-Tien Lin,et al. High-resolution Non-oscillatory Central Schemes for Hamilton-jacobi Equations , 2022 .
[2] S. Osher,et al. High-order essentially nonsocillatory schemes for Hamilton-Jacobi equations , 1990 .
[3] W. Zijl. GENERALIZED POTENTIAL FLOW THEORY AND DIRECT CALCULATION OF VELOCITIES APPLIED TO AND THE BOUSSINESQ EQUATIONS THE NUMERICAL SOLUTION OF THE NAVIER-STOKES , 1988 .
[4] Chi-Wang Shu,et al. A Discontinuous Galerkin Finite Element Method for Hamilton-Jacobi Equations , 1999, SIAM J. Sci. Comput..
[5] P. Colella,et al. A second-order projection method for the incompressible navier-stokes equations , 1989 .
[6] S. Osher,et al. Some results on uniformly high-order accurate essentially nonoscillatory schemes , 1986 .
[7] H. Kreiss,et al. Smallest scale estimates for the Navier-Stokes equations for incompressible fluids , 1990 .
[8] P. Lions,et al. Two approximations of solutions of Hamilton-Jacobi equations , 1984 .
[9] E. Tadmor,et al. Non-oscillatory central differencing for hyperbolic conservation laws , 1990 .
[10] Wilhelm Schlag,et al. LOCAL SMOOTHING ESTIMATES RELATED TO THE CIRCULAR MAXIMAL THEOREM , 1997 .
[11] E. Tadmor,et al. New High-Resolution Central Schemes for Nonlinear Conservation Laws and Convection—Diffusion Equations , 2000 .
[12] B. V. Leer,et al. Towards the ultimate conservative difference scheme V. A second-order sequel to Godunov's method , 1979 .
[13] R. Abgrall. Numerical discretization of the first‐order Hamilton‐Jacobi equation on triangular meshes , 1996 .
[14] P. Souganidis. Approximation schemes for viscosity solutions of Hamilton-Jacobi equations , 1985 .
[15] W. D. Evans,et al. PARTIAL DIFFERENTIAL EQUATIONS , 1941 .
[16] Chi-Tien Lin,et al. $L^1$-Stability and error estimates for approximate Hamilton-Jacobi solutions , 2001, Numerische Mathematik.
[17] Eitan Tadmor,et al. Non-Oscillatory Central Schemes for the Incompressible 2-D Euler Equations , 1997 .
[18] Centro internazionale matematico estivo. Session,et al. Viscosity solutions and applications : lectures given at the 2nd session of the Centro internazionale matematico estivo (C.I.M.E.) held in Montecatini Terme, Italy, June 12-20, 1995 , 1997 .
[19] T. Hou,et al. Second-order convergence of a projection scheme for the incompressible Navier-Stokes equations with boundaries , 1993 .
[20] S. Osher,et al. On the convergence of difference approximations to scalar conservation laws , 1988 .
[21] M. Falcone,et al. Numerical schemes for conservation laws via Hamilton-Jacobi equations , 1995 .
[22] S. Osher,et al. Uniformly high order accurate essentially non-oscillatory schemes, 111 , 1987 .
[23] Chi-Tien Lin,et al. High-Resolution Nonoscillatory Central Schemes for Hamilton-Jacobi Equations , 1999, SIAM J. Sci. Comput..
[24] M. Minion,et al. Performance of Under-resolved Two-Dimensional Incompressible Flow , 1995 .
[25] Chi-Wang Shu. Total-variation-diminishing time discretizations , 1988 .
[26] B. M. Fulk. MATH , 1992 .
[27] Panagiotis E. Souganidis,et al. Finite volume schemes for Hamilton–Jacobi equations , 1999, Numerische Mathematik.
[28] E Weinan,et al. Finite Difference Schemes for Incompressible Flows in the Velocity-Impulse Density Formulation , 1997 .
[29] Heinz-Otto Kreiss,et al. On the smallest scale for the incompressible Navier-Stokes equations , 1989, Theoretical and Computational Fluid Dynamics.
[30] A. Chorin. Numerical solution of the Navier-Stokes equations , 1968 .
[31] S. Osher,et al. Efficient implementation of essentially non-oscillatory shock-capturing schemes,II , 1989 .
[32] S. Osher,et al. Uniformly high order accuracy essentially non-oscillatory schemes III , 1987 .