New High-Resolution Semi-discrete Central Schemes for Hamilton—Jacobi Equations

We introduce a new high-resolution central scheme for multidimensional Hamilton?Jacobi equations. The scheme retains the simplicity of the non-oscillatory central schemes developed by C.-T. Lin and E. Tadmor (in press, SIAM J. Sci. Comput.), yet it enjoys a smaller amount of numerical viscosity, independent of 1/?t. By letting ?t?0 we obtain a new second-order central scheme in the particularly simple semi-discrete form, along the lines of the new semi-discrete central schemes recently introduced by the authors in the context of hyperbolic conservation laws. Fully discrete versions are obtained with appropriate Runge?Kutta solvers. The smaller amount of dissipation enables efficient integration of convection-diffusion equations, where the accumulated error is independent of a small time step dictated by the CFL limitation. The scheme is non-oscillatory thanks to the use of nonlinear limiters. Here we advocate the use of such limiters on second discrete derivatives, which is shown to yield an improved high resolution when compared to the usual limitation of first derivatives. Numerical experiments demonstrate the remarkable resolution obtained by the proposed new central scheme.

[1]  Chi-Tien Lin,et al.  High-resolution Non-oscillatory Central Schemes for Hamilton-jacobi Equations , 2022 .

[2]  S. Osher,et al.  High-order essentially nonsocillatory schemes for Hamilton-Jacobi equations , 1990 .

[3]  W. Zijl GENERALIZED POTENTIAL FLOW THEORY AND DIRECT CALCULATION OF VELOCITIES APPLIED TO AND THE BOUSSINESQ EQUATIONS THE NUMERICAL SOLUTION OF THE NAVIER-STOKES , 1988 .

[4]  Chi-Wang Shu,et al.  A Discontinuous Galerkin Finite Element Method for Hamilton-Jacobi Equations , 1999, SIAM J. Sci. Comput..

[5]  P. Colella,et al.  A second-order projection method for the incompressible navier-stokes equations , 1989 .

[6]  S. Osher,et al.  Some results on uniformly high-order accurate essentially nonoscillatory schemes , 1986 .

[7]  H. Kreiss,et al.  Smallest scale estimates for the Navier-Stokes equations for incompressible fluids , 1990 .

[8]  P. Lions,et al.  Two approximations of solutions of Hamilton-Jacobi equations , 1984 .

[9]  E. Tadmor,et al.  Non-oscillatory central differencing for hyperbolic conservation laws , 1990 .

[10]  Wilhelm Schlag,et al.  LOCAL SMOOTHING ESTIMATES RELATED TO THE CIRCULAR MAXIMAL THEOREM , 1997 .

[11]  E. Tadmor,et al.  New High-Resolution Central Schemes for Nonlinear Conservation Laws and Convection—Diffusion Equations , 2000 .

[12]  B. V. Leer,et al.  Towards the ultimate conservative difference scheme V. A second-order sequel to Godunov's method , 1979 .

[13]  R. Abgrall Numerical discretization of the first‐order Hamilton‐Jacobi equation on triangular meshes , 1996 .

[14]  P. Souganidis Approximation schemes for viscosity solutions of Hamilton-Jacobi equations , 1985 .

[15]  W. D. Evans,et al.  PARTIAL DIFFERENTIAL EQUATIONS , 1941 .

[16]  Chi-Tien Lin,et al.  $L^1$-Stability and error estimates for approximate Hamilton-Jacobi solutions , 2001, Numerische Mathematik.

[17]  Eitan Tadmor,et al.  Non-Oscillatory Central Schemes for the Incompressible 2-D Euler Equations , 1997 .

[18]  Centro internazionale matematico estivo. Session,et al.  Viscosity solutions and applications : lectures given at the 2nd session of the Centro internazionale matematico estivo (C.I.M.E.) held in Montecatini Terme, Italy, June 12-20, 1995 , 1997 .

[19]  T. Hou,et al.  Second-order convergence of a projection scheme for the incompressible Navier-Stokes equations with boundaries , 1993 .

[20]  S. Osher,et al.  On the convergence of difference approximations to scalar conservation laws , 1988 .

[21]  M. Falcone,et al.  Numerical schemes for conservation laws via Hamilton-Jacobi equations , 1995 .

[22]  S. Osher,et al.  Uniformly high order accurate essentially non-oscillatory schemes, 111 , 1987 .

[23]  Chi-Tien Lin,et al.  High-Resolution Nonoscillatory Central Schemes for Hamilton-Jacobi Equations , 1999, SIAM J. Sci. Comput..

[24]  M. Minion,et al.  Performance of Under-resolved Two-Dimensional Incompressible Flow , 1995 .

[25]  Chi-Wang Shu Total-variation-diminishing time discretizations , 1988 .

[26]  B. M. Fulk MATH , 1992 .

[27]  Panagiotis E. Souganidis,et al.  Finite volume schemes for Hamilton–Jacobi equations , 1999, Numerische Mathematik.

[28]  E Weinan,et al.  Finite Difference Schemes for Incompressible Flows in the Velocity-Impulse Density Formulation , 1997 .

[29]  Heinz-Otto Kreiss,et al.  On the smallest scale for the incompressible Navier-Stokes equations , 1989, Theoretical and Computational Fluid Dynamics.

[30]  A. Chorin Numerical solution of the Navier-Stokes equations , 1968 .

[31]  S. Osher,et al.  Efficient implementation of essentially non-oscillatory shock-capturing schemes,II , 1989 .

[32]  S. Osher,et al.  Uniformly high order accuracy essentially non-oscillatory schemes III , 1987 .