Polarized Molecular Orbital Model Chemistry 3. The PMO Method Extended to Organic Chemistry.

The polarized molecular orbital (PMO) method, a neglect-of-diatomic-differential-overlap (NDDO) semiempirical molecular orbital method previously parameterized for systems composed of O and H, is here extended to carbon. We modified the formalism and optimized all the parameters in the PMO Hamiltonian by using a genetic algorithm and a database containing both electrostatic and energetic properties; the new parameter set is called PMO2. The quality of the resulting predictions is compared to results obtained by previous NDDO semiempirical molecular orbital methods, both including and excluding dispersion terms. We also compare the PMO2 properties to SCC-DFTB calculations. Within the class of semiempirical molecular orbital methods, the PMO2 method is found to be especially accurate for polarizabilities, atomization energies, proton transfer energies, noncovalent complexation energies, and chemical reaction barrier heights and to have good across-the-board accuracy for a range of other properties, including dipole moments, partial atomic charges, and molecular geometries.

[1]  Donald G Truhlar,et al.  Charge Model 5: An Extension of Hirshfeld Population Analysis for the Accurate Description of Molecular Interactions in Gaseous and Condensed Phases. , 2012, Journal of chemical theory and computation.

[2]  Pavel Hobza,et al.  Advanced Corrections of Hydrogen Bonding and Dispersion for Semiempirical Quantum Mechanical Methods. , 2012, Journal of chemical theory and computation.

[3]  W. Thiel,et al.  Benchmarking Semiempirical Methods for Thermochemistry, Kinetics, and Noncovalent Interactions: OMx Methods Are Almost As Accurate and Robust As DFT-GGA Methods for Organic Molecules. , 2011, Journal of chemical theory and computation.

[4]  Hannah R. Leverentz,et al.  Polarized Molecular Orbital Model Chemistry. II. The PMO Method. , 2011, Journal of chemical theory and computation.

[5]  D. Truhlar,et al.  Polarized Molecular Orbital Model Chemistry. I. Ab Initio Foundations. , 2011, Journal of chemical theory and computation.

[6]  D. Truhlar,et al.  Convergent Partially Augmented Basis Sets for Post-Hartree-Fock Calculations of Molecular Properties and Reaction Barrier Heights. , 2011, Journal of chemical theory and computation.

[7]  M. Elstner,et al.  Automatized parametrization of SCC-DFTB repulsive potentials: application to hydrocarbons. , 2009, The journal of physical chemistry. A.

[8]  D. Truhlar,et al.  Valence-Bond Order (VBO): A New Approach to Modeling Reactive Potential Energy Surfaces for Complex Systems, Materials, and Nanoparticles. , 2009, Journal of chemical theory and computation.

[9]  Donald G Truhlar,et al.  The variational explicit polarization potential and analytical first derivative of energy: Towards a next generation force field. , 2008, The Journal of chemical physics.

[10]  D. Truhlar,et al.  Tight-Binding Configuration Interaction (TBCI): A Noniterative Approach to Incorporating Electrostatics into Tight Binding. , 2008, Journal of chemical theory and computation.

[11]  Walter Thiel,et al.  OMx-D: semiempirical methods with orthogonalization and dispersion corrections. Implementation and biochemical application. , 2008, Physical chemistry chemical physics : PCCP.

[12]  D. Truhlar,et al.  The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals , 2008 .

[13]  J. Stewart Optimization of parameters for semiempirical methods V: Modification of NDDO approximations and application to 70 elements , 2007, Journal of molecular modeling.

[14]  T. Frauenheim,et al.  DFTB+, a sparse matrix-based implementation of the DFTB method. , 2007, The journal of physical chemistry. A.

[15]  I. H. Hillier,et al.  Semi-empirical molecular orbital methods including dispersion corrections for the accurate prediction of the full range of intermolecular interactions in biomolecules. , 2007, Physical chemistry chemical physics : PCCP.

[16]  Jiali Gao,et al.  Theoretical analysis of the rotational barrier of ethane. , 2007, Accounts of chemical research.

[17]  Jiali Gao,et al.  Methods and Applications of Combined Quantum Mechanical and Molecular Mechanical Potentials , 2007 .

[18]  Julian Tirado-Rives,et al.  Comparison of SCC-DFTB and NDDO-based semiempirical molecular orbital methods for organic molecules. , 2006, The journal of physical chemistry. A.

[19]  Pavel Hobza,et al.  Structure of isolated tryptophyl-glycine dipeptide and tryptophyl-glycyl-glycine tripeptide: ab initio SCC-DFTB-D molecular dynamics simulations and high-level correlated ab initio quantum chemical calculations. , 2006, The journal of physical chemistry. B.

[20]  Darrin M York,et al.  A Semiempirical Quantum Model for Hydrogen-Bonded Nucleic Acid Base Pairs. , 2005, Journal of chemical theory and computation.

[21]  Serguei Patchkovskii,et al.  An Efficient a Posteriori Treatment for Dispersion Interaction in Density-Functional-Based Tight Binding. , 2005, Journal of chemical theory and computation.

[22]  G. Seifert,et al.  Density functional based calculations for Fen (n ≤ 32) , 2005 .

[23]  Stefan Grimme,et al.  Accurate description of van der Waals complexes by density functional theory including empirical corrections , 2004, J. Comput. Chem..

[24]  Jiali Gao,et al.  The magnitude of hyperconjugation in ethane: a perspective from ab initio valence bond theory. , 2004, Angewandte Chemie.

[25]  Donald G. Truhlar,et al.  Class IV Charge Model for the Self-Consistent Charge Density-Functional Tight-Binding Method , 2004 .

[26]  Petros Koumoutsakos,et al.  Dispersion corrections to density functionals for water aromatic interactions. , 2004, The Journal of chemical physics.

[27]  E. Baerends,et al.  The case for steric repulsion causing the staggered conformation of ethane. , 2003, Angewandte Chemie.

[28]  D. York,et al.  Parameterization of semiempirical methods to treat nucleophilic attacks to biological phosphates: AM1/d parameters for phosphorus , 2003 .

[29]  Donald G. Truhlar,et al.  Effectiveness of Diffuse Basis Functions for Calculating Relative Energies by Density Functional Theory , 2003 .

[30]  Sándor Suhai,et al.  SCC-DFTB-D study of intercalating carcinogens: Benzo(a)pyrene and its metabolites complexed with the G-C base pair , 2003 .

[31]  William L. Jorgensen,et al.  PDDG/PM3 and PDDG/MNDO: Improved semiempirical methods , 2002, J. Comput. Chem..

[32]  Kenneth M. Merz,et al.  Sodium parameters for AM1 and PM3 optimized using a modified genetic algorithm , 2002 .

[33]  Qin Wu,et al.  Empirical correction to density functional theory for van der Waals interactions , 2002 .

[34]  A. V. Duin,et al.  ReaxFF: A Reactive Force Field for Hydrocarbons , 2001 .

[35]  Thomas Frauenheim,et al.  Hydrogen bonding and stacking interactions of nucleic acid base pairs: A density-functional-theory based treatment , 2001 .

[36]  Walter Thiel,et al.  Orthogonalization corrections for semiempirical methods , 2000 .

[37]  David Coley,et al.  Introduction to Genetic Algorithms for Scientists and Engineers , 1999 .

[38]  L. Curtiss,et al.  Gaussian-3 (G3) theory for molecules containing first and second-row atoms , 1998 .

[39]  Michael C. Hutter,et al.  MODELING THE BACTERIAL PHOTOSYNTHETIC REACTION CENTER. 1. MAGNESIUM PARAMETERS FOR THE SEMIEMPIRICAL AM1 METHOD DEVELOPED USING A GENETIC ALGORITHM , 1998 .

[40]  Sándor Suhai,et al.  Self-consistent-charge density-functional tight-binding method for simulations of complex materials properties , 1998 .

[41]  K. Morokuma,et al.  ONIOM: A Multilayered Integrated MO + MM Method for Geometry Optimizations and Single Point Energy Predictions. A Test for Diels−Alder Reactions and Pt(P(t-Bu)3)2 + H2 Oxidative Addition , 1996 .

[42]  Alexander D. MacKerell,et al.  Progress toward chemical accuracy in the computer simulation of condensed phase reactions. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[43]  Donald G. Truhlar,et al.  Parameterization of NDDO wavefunctions using genetic algorithms. An evolutionary approach to parameterizing potential energy surfaces and direct dynamics calculations for organic reactions , 1995 .

[44]  M. Frisch,et al.  Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields , 1994 .

[45]  Walter Thiel,et al.  Beyond the MNDO model: Methodical considerations and numerical results , 1993, J. Comput. Chem..

[46]  W. Goddard,et al.  UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations , 1992 .

[47]  D. Brenner,et al.  Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films. , 1990, Physical review. B, Condensed matter.

[48]  J. Stewart Optimization of parameters for semiempirical methods I. Method , 1989 .

[49]  Eamonn F. Healy,et al.  Development and use of quantum mechanical molecular models. 76. AM1: a new general purpose quantum mechanical molecular model , 1985 .

[50]  Timothy Clark,et al.  Efficient diffuse function‐augmented basis sets for anion calculations. III. The 3‐21+G basis set for first‐row elements, Li–F , 1983 .

[51]  W. Thiel Semiempirical NDDO calculations with STO-3G and 4-31G basis sets , 1981 .

[52]  J. Pople,et al.  Self‐consistent molecular orbital methods. XX. A basis set for correlated wave functions , 1980 .

[53]  Walter Thiel,et al.  Ground States of Molecules. 38. The MNDO Method. Approximations and Parameters , 1977 .

[54]  Walter Thiel,et al.  A semiempirical model for the two-center repulsion integrals in the NDDO approximation , 1977 .

[55]  J. Pople,et al.  Approximate Self-Consistent Molecular Orbital Theory. I. Invariant Procedures , 1965 .

[56]  R. S. Mulliken Electronic Population Analysis on LCAO–MO Molecular Wave Functions. I , 1955 .

[57]  R. K. Nesbet,et al.  Self‐Consistent Orbitals for Radicals , 1954 .

[58]  Clemens C. J. Roothaan,et al.  New Developments in Molecular Orbital Theory , 1951 .