Covariance consistency methods for fault-tolerant distributed data fusion

Abstract This paper presents a general, rigorous, and fault-tolerant framework for maintaining consistent mean and covariance estimates in an arbitrary, dynamic, distributed network of information processing nodes. In particular, a solution is provided that addresses the information deconfliction problem that arises when estimates from two or more different nodes are determined to be inconsistent with each other, e.g., when two high precision (small covariance) estimates place the position of a particular object at very different locations. The challenge is to be able to resolve such inconsistencies without having to access and exploit global information to determine which of the estimates is spurious. The solution proposed in this paper is called Covariance Union.

[1]  Jeffrey K. Uhlmann,et al.  Introduction to the Algorithmics of Data Association in Multiple-Target Tracking , 2017 .

[2]  Pramod K. Varshney,et al.  Multisensor Data Fusion , 1997, IEA/AIE.

[3]  T. Başar,et al.  A New Approach to Linear Filtering and Prediction Problems , 2001 .

[4]  Alan N. Steinberg,et al.  A Systems Engineering Approach for Implementing Data Fusion Systems , 2001 .

[5]  Stephen P. Boyd,et al.  sdpsol: a parse/solver for semidefinite programs with matrix structure , 1999 .

[6]  Ranjeev Mittu,et al.  Common Operational Picture (COP) and Common Tactical Picture (CTP) Management via a Consistent Networked Information Stream (CNIS) , 2000 .

[7]  James Llinas,et al.  Multisensor Data Fusion , 1990 .

[8]  Aubrey B. Poore,et al.  Data Association Using Multiple Frame Assignments , 2001 .

[9]  Charles R. Johnson,et al.  Topics in Matrix Analysis , 1991 .

[10]  Jeffrey K. Uhlmann,et al.  A non-divergent estimation algorithm in the presence of unknown correlations , 1997, Proceedings of the 1997 American Control Conference (Cat. No.97CH36041).

[11]  Samuel S. Blackman,et al.  Multiple-Target Tracking with Radar Applications , 1986 .

[12]  R. Bucy,et al.  Digital synthesis of non-linear filters , 1971 .

[13]  P. Mahalanobis On the generalized distance in statistics , 1936 .

[14]  N E Manos,et al.  Stochastic Models , 1960, Encyclopedia of Social Network Analysis and Mining. 2nd Ed..

[15]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[16]  David L. Hall,et al.  Dirty Secrets in Multisensor Data Fusion , 2001 .

[17]  R. Todling,et al.  Suboptimal Schemes for Atmospheric Data Assimilation Based on the Kalman Filter , 1994 .

[18]  Jeffrey K. Uhlmann,et al.  General Decentralized Data Fusion With Covariance Intersection (CI) , 2001 .

[19]  Jeffrey K. Uhlmann,et al.  An Introduction to the Combinatorics of Optimal and Approximate Data Association , 2001 .

[20]  Y. Bar-Shalom Tracking and data association , 1988 .

[21]  F. Daum,et al.  Handbook of multisensor data fusion [Book Review] , 2001, IEEE Aerospace and Electronic Systems Magazine.

[22]  James Llinas,et al.  Handbook of Multisensor Data Fusion , 2001 .