Volatility Options in Rough Volatility Models

We discuss the pricing and hedging of volatility options in some rough volatility models. First, we develop efficient Monte Carlo methods and asymptotic approximations for computing option prices and hedge ratios in models where log-volatility follows a Gaussian Volterra process. While providing a good fit for European options, these models are unable to reproduce the VIX option smile observed in the market, and are thus not suitable for VIX products. To accommodate these, we introduce the class of modulated Volterra processes, and show that they successfully capture the VIX smile.

[1]  B. Mandelbrot,et al.  Fractional Brownian Motions, Fractional Noises and Applications , 1968 .

[2]  A. Shiryaev,et al.  Limit Theorems for Stochastic Processes , 1987 .

[3]  A. Kemna,et al.  A pricing method for options based on average asset values , 1990 .

[4]  P. Protter Stochastic integration and differential equations , 1990 .

[5]  P. Carr,et al.  Option Pricing, Interest Rates and Risk Management: Towards a Theory of Volatility Trading , 2001 .

[6]  D. Duffie,et al.  Affine Processes and Application in Finance , 2002 .

[7]  L. Bergomi Smile Dynamics II , 2005 .

[8]  H. Buhler Volatility Markets Consistent modeling, hedging and practical implementation , 2006 .

[9]  T. Kurtz,et al.  Stochastic equations in infinite dimensions , 2006 .

[10]  R. Adler,et al.  Random Fields and Geometry , 2007 .

[11]  Jorge A. León,et al.  On the short-time behavior of the implied volatility for jump-diffusion models with stochastic volatility , 2006, Finance Stochastics.

[12]  Jim Gatheral Consistent Modeling of SPX and VIX options , 2008 .

[13]  L. Bergomi Smile Dynamics III , 2008 .

[14]  Ole E. Barndorff-Nielsen,et al.  Brownian Semistationary Processes and Volatility/Intermittency , 2009 .

[15]  L. Bergomi Smile Dynamics IV , 2009 .

[16]  Joseph Lipka,et al.  A Table of Integrals , 2010 .

[17]  J. Muhle‐Karbe,et al.  Exponentially affine martingales, affine measure changes and exponential moments of affine processes , 2010 .

[18]  Jim Gatheral,et al.  Fast Ninomiya-Victoir Calibration of the Double-Mean-Reverting Model , 2013 .

[19]  Jointly Modeling of VIX and SPX Options at a Single and Common Maturity with Risk Management Applications , 2013 .

[20]  M. Rosenbaum,et al.  Volatility is rough , 2014, 1410.3394.

[21]  Forward Variance Dynamics: Bergomi’s Model Revisited , 2014 .

[22]  Patrick Roome,et al.  Asymptotic Behaviour of the Fractional Heston Model , 2014 .

[23]  Jim Gatheral,et al.  Pricing under rough volatility , 2015 .

[24]  M. Fukasawa Short-time at-the-money skew and rough fractional volatility , 2015, 1501.06980.

[25]  M. Rosenbaum,et al.  The characteristic function of rough Heston models , 2016, 1609.02108.

[26]  Elmahdi Omar,et al.  The microstructural foundations of leverage effect and rough volatility , 2016, 1609.05177.

[27]  Kerstin Vogler,et al.  Table Of Integrals Series And Products , 2016 .

[28]  O. Akdogan Variance curve models: finite dimensional realizations and beyond , 2016 .

[29]  Marcel Nutz,et al.  Bounds for VIX futures given S&P 500 smiles , 2017, Finance Stochastics.

[30]  Claude Martini,et al.  On VIX futures in the rough Bergomi model , 2017, 1701.04260.

[31]  A. Jacquier,et al.  Functional Central Limit Theorems for Rough Volatility , 2017, 1711.03078.

[32]  A. Jacquier,et al.  Asymptotic Behaviour of Randomised Fractional Volatility Models , 2017, 1708.01121.

[33]  Mikko S. Pakkanen,et al.  Hybrid scheme for Brownian semistationary processes , 2015, Finance Stochastics.

[34]  Turbocharging Monte Carlo pricing for the rough Bergomi model , 2017, 1708.02563.

[35]  Claude Martini,et al.  The Extended SSVI Volatility Surface , 2017 .

[36]  Mathieu Rosenbaum,et al.  Perfect hedging in rough Heston models , 2017, The Annals of Applied Probability.

[37]  C. Bayer,et al.  Short-time near-the-money skew in rough fractional volatility models , 2017, Quantitative Finance.

[38]  Mathieu Rosenbaum,et al.  The microstructural foundations of leverage effect and rough volatility , 2018, Finance Stochastics.

[39]  Markus Leippold,et al.  National Centre of Competence in Research Financial Valuation and Risk Management Working Paper No . 870 Inferring Volatility Dynamics and Risk Premia from the S & P 500 and VIX Markets , 2013 .

[40]  Martin Larsson,et al.  Affine Volterra processes , 2017, The Annals of Applied Probability.

[41]  Jim Gatheral,et al.  Affine forward variance models , 2018, Finance and Stochastics.

[42]  Tsuyoshi Murata,et al.  {m , 1934, ACML.