On the matrix equation arising in an interpolation problem

In this article, we consider the nonlinear matrix equation arising in an interpolation problem. We use the Thompson metric to prove that the matrix equation always has a unique positive definite solution. An iterative method is constructed to compute the unique positive definite solution and its error estimation formula is given. Based on the matrix differentiation, we give a precise perturbation bound for the unique positive definite solution. The new results are illustrated by some numerical examples in the end.

[1]  Anping Liao,et al.  On the nonlinear matrix equation X-∑i=1mAi∗XδiAi=Q , 2008 .

[2]  Lev A. Sakhnovich,et al.  Interpolation Theory and Its Applications , 1997 .

[3]  Salah M. El-Sayed,et al.  Iterative methods for the extremal positive definite solution of the matrix equation X+A*X-αA=Q , 2007 .

[4]  Chun-Hua Guo,et al.  A note on the fixed-point iteration for the matrix equations X±A∗X-1A=I , 2008 .

[5]  R. Nussbaum Hilbert's Projective Metric and Iterated Nonlinear Maps , 1988 .

[6]  Yongdo Lim,et al.  Solving the nonlinear matrix equation X=Q+∑i=1mMiXδiMi∗ via a contraction principle , 2009 .

[7]  A. Ran,et al.  A nonlinear matrix equation connected to interpolation theory , 2004 .

[8]  Y. Cho,et al.  Fixed Point Theory and Applications , 2000 .

[9]  Chun-Hua Guo,et al.  Iterative solution of two matrix equations , 1999, Math. Comput..

[10]  Xin-Guo Liu,et al.  On the positive definite solutions of the matrix equations Xs±ATX−tA=In☆ , 2003 .

[11]  Miodrag S. Petkovic,et al.  Construction of optimal order nonlinear solvers using inverse interpolation , 2010, Appl. Math. Comput..

[12]  A. Liao,et al.  On the existence of Hermitian positive definite solutions of the matrix equation Xs + A*X-tA = Q , 2008 .

[13]  Y. Lim,et al.  Invariant metrics, contractions and nonlinear matrix equations , 2008 .

[14]  Wen-Wei Lin,et al.  Convergence Analysis of Structure-Preserving Doubling Algorithms for Riccati-Type Matrix Equations , 2006, SIAM J. Matrix Anal. Appl..

[15]  A. C. Thompson ON CERTAIN CONTRACTION MAPPINGS IN A PARTIALLY ORDERED VECTOR SPACE , 1963 .

[16]  Hidegoro Nakano,et al.  Invariant metrics , 1965 .

[17]  André C. M. Ran,et al.  On an Iteration Method for Solving a Class of Nonlinear Matrix Equations , 2001, SIAM J. Matrix Anal. Appl..

[18]  Xue-Feng Duan,et al.  On the nonlinear matrix equation X+A*X-qA=Q(q≥1) , 2009, Math. Comput. Model..

[19]  Frank Uhlig,et al.  Improved methods and starting values to solve the matrix equations X±A*X-1A=I iteratively , 2004, Math. Comput..

[20]  V. Hasanov,et al.  On two perturbation estimates of the extreme solutions to the equations X ± A*X−1A = Q☆ , 2006 .

[21]  Jing Cai,et al.  On the Hermitian positive definite solutions of nonlinear matrix equation Xs + A*X-tA = Q , 2010, Appl. Math. Comput..

[22]  B. Levy,et al.  Hermitian solutions of the equation X = Q + NX−1N∗ , 1996 .

[23]  David W. Lewis,et al.  Matrix theory , 1991 .

[24]  Beatrice Meini,et al.  Efficient computation of the extreme solutions of X + A*X-1A = Q and X - A*X-1A = Q , 2001, Math. Comput..

[25]  Peter Benner,et al.  On the Solution of the Rational Matrix Equation , 2007, EURASIP J. Adv. Signal Process..