Complexity of domination in triangulated plane graphs

Abstract We prove that for a triangulated plane graph it is NP-complete to determine its domination number and its power domination number.

[1]  Anthony Mansfield,et al.  Determining the thickness of graphs is NP-hard , 1983, Mathematical Proceedings of the Cambridge Philosophical Society.

[2]  Ashkan Aazami,et al.  Domination in graphs with bounded propagation: algorithms, formulations and hardness results , 2008, J. Comb. Optim..

[3]  Michael A. Henning,et al.  Domination in Graphs Applied to Electric Power Networks , 2002, SIAM J. Discret. Math..

[4]  Wayne Goddard,et al.  Thoroughly Distributed Colorings , 2016, 1609.09684.

[5]  Jan Kratochvíl A Special Planar Satisfiability Problem and a Consequence of Its NP-completeness , 1994, Discret. Appl. Math..

[6]  Lenwood S. Heath,et al.  The PMU Placement Problem , 2005, SIAM J. Discret. Math..

[7]  Paul Dorbec,et al.  Power domination in maximal planar graphs , 2019, Discret. Math. Theor. Comput. Sci..

[8]  Mark de Berg,et al.  Optimal Binary Space Partitions for Segments in the Plane , 2012, Int. J. Comput. Geom. Appl..