One-Dimensional Thickness Scaling Study of Phase Change Material $(\hbox{Ge}_{2}\hbox{Sb}_{2}\hbox{Te}_{5})$ Using a Pseudo 3-Terminal Device

To address the scalability of phase change memory (PCM), we study a 1-D thickness scaling effect on threshold switching voltage (<i>V</i><sub>th</sub>), <i>V</i><sub>th</sub> drift, high resistance state (RESET) resistance (<i>R</i><sub>RESET</sub>) drift, and crystallization temperature (<i>T</i><sub>crys</sub>). We use a pseudo three-terminal device to accurately correlate the amorphous region thickness to the observed characteristics. The pseudo 3-terminal device is a fully functional PCM cell and enables 1-D thickness scaling study down to 6 nm without the need for ultrafine lithography. <i>V</i><sub>th</sub> scales down to 0.65-0.5 V (at 25°C-75°C) for 6-nm-thick Ge<sub>2</sub>Sb<sub>2</sub>Te<sub>5</sub> (GST), showing that stable read operation is possible in scaled PCM devices. The <i>V</i><sub>th</sub> drift measurement suggests that <i>V</i><sub>th</sub> drift can be attributed to threshold switching field (<i>E</i><sub>th</sub>) drift, whereas <i>V</i><sub>th0</sub>, i.e., <i>V</i><sub>th</sub> at zero thickness, stays almost constant. <i>R</i><sub>RESET</sub> drift shows no dependence on the amorphous GST thickness. <i>T</i><sub>crys</sub> is ~175°C for the device with 6-nm-thick GST, compared with ~145°C of thick GST. From the 1-D scaling study, no significant hurdles against scaling are found down to 6 nm. Further study of scaling effect on endurance and development of scalable selection device is needed to assess the ultimate scalability of PCM.

[1]  Roberto Bez,et al.  Chalcogenide PCM: a memory technology for next decade , 2009, 2009 IEEE International Electron Devices Meeting (IEDM).

[2]  Se-Ho Lee,et al.  Highly scalable non-volatile and ultra-low-power phase-change nanowire memory. , 2007, Nature nanotechnology.

[3]  A. Pirovano,et al.  Low-field amorphous state resistance and threshold voltage drift in chalcogenide materials , 2004, IEEE Transactions on Electron Devices.

[4]  H.-S. Philip Wong,et al.  Synthesis and Size-Dependent Crystallization of Colloidal Germanium Telluride , 2010 .

[5]  S. Braga,et al.  Dependence of resistance drift on the amorphous cap size in phase change memory arrays , 2009 .

[6]  D. Ielmini,et al.  Reliability study of phase-change nonvolatile memories , 2004, IEEE Transactions on Device and Materials Reliability.

[7]  G. Servalli,et al.  A 45nm generation Phase Change Memory technology , 2009, 2009 IEEE International Electron Devices Meeting (IEDM).

[8]  Y.J. Song,et al.  Two-bit cell operation in diode-switch phase change memory cells with 90nm technology , 2008, 2008 Symposium on VLSI Technology.

[9]  Simone Raoux,et al.  Crystallization properties of ultrathin phase change films , 2008 .

[10]  H.-S. Philip Wong,et al.  Phase Change Nanodots Patterning using a Self-Assembled Polymer Lithography and Crystallization Analysis , 2008 .

[11]  K. Gopalakrishnan,et al.  Phase change memory technology , 2010, 1001.1164.

[12]  M. Meyyappan,et al.  Chalcogenide-Nanowire-Based Phase Change Memory , 2008, IEEE Transactions on Nanotechnology.

[13]  I. Karpov,et al.  Nucleation switching in phase change memory , 2007 .

[14]  Yeonwoong Jung,et al.  Size-dependent surface-induced heterogeneous nucleation driven phase-change in Ge2Sb2Te5 nanowires. , 2008, Nano letters.

[15]  A. Pirovano,et al.  Scaling analysis of phase-change memory technology , 2003, IEEE International Electron Devices Meeting 2003.

[16]  Matthias Wuttig,et al.  Threshold field of phase change memory materials measured using phase change bridge devices , 2009 .

[17]  H.-S. Philip Wong,et al.  Thermal disturbance and its impact on reliability of phase-change memory studied by the micro-thermal stage , 2010, 2010 IEEE International Reliability Physics Symposium.

[18]  U-In Chung,et al.  Parallel multi-confined (PMC) cell technology for high density MLC PRAM , 2006, 2009 Symposium on VLSI Technology.

[19]  Simone Raoux,et al.  Influence of interfaces and doping on the crystallization temperature of Ge–Sb , 2009 .

[20]  A. Pirovano,et al.  Electrothermal and phase-change dynamics in chalcogenide-based memories , 2004, IEDM Technical Digest. IEEE International Electron Devices Meeting, 2004..

[21]  A. Pirovano,et al.  Electronic switching in phase-change memories , 2004, IEEE Transactions on Electron Devices.

[22]  Daniele Ielmini,et al.  Threshold switching mechanism by high-field energy gain in the hopping transport of chalcogenide glasses , 2008 .

[23]  I. Karpov,et al.  Fundamental drift of parameters in chalcogenide phase change memory , 2007 .

[24]  S.O. Park,et al.  Highly Scalable Phase Change Memory with CVD GeSbTe for Sub 50nm Generation , 2007, 2007 IEEE Symposium on VLSI Technology.

[25]  D. Ielmini,et al.  Distributed-Poole-Frenkel modeling of anomalous resistance scaling and fluctuations in phase-change memory (PCM) devices , 2009, 2009 IEEE International Electron Devices Meeting (IEDM).

[26]  Dong Yu,et al.  Minimum voltage for threshold switching in nanoscale phase-change memory. , 2008, Nano letters.

[27]  D. Ielmini,et al.  Modeling of Programming and Read Performance in Phase-Change Memories—Part I: Cell Optimization and Scaling , 2008, IEEE Transactions on Electron Devices.

[28]  M. Lankhorst,et al.  Low-cost and nanoscale non-volatile memory concept for future silicon chips , 2005, Nature materials.

[29]  D. Ielmini,et al.  Recovery and Drift Dynamics of Resistance and Threshold Voltages in Phase-Change Memories , 2007, IEEE Transactions on Electron Devices.