Semipolar GaN-based laser diodes for Gbit/s white lighting communication: devices to systems

We report the high-speed performance of semipolar GaN ridge laser diodes at 410 nm and the dynamic characteristics including differential gain, damping, and the intrinsic maximum bandwidth. To the best of our knowledge, the achieved modulation bandwidth of 6.8 GHz is the highest reported value in the blue-violet spectrum. The calculated differential gain of ~3 x 10-16 cm2, which is a critical factor in high-speed modulation, proved theoretical predictions of higher gain in semipolar GaN laser diodes than the conventional c-plane counterparts. In addition, we demonstrate the first novel white lighting communication system by using our near-ultraviolet (NUV) LDs and pumping red-, green-, and blueemitting phosphors. This system satisfies both purposes of high-speed communication and high-quality white light illumination. A high data rate of 1.5 Gbit/s using on-off keying (OOK) modulation together with a high color rendering index (CRI) of 80 has been measured.

[1]  Stefan Videv,et al.  Towards a 100 Gb / s visible light wireless access network , 2015 .

[2]  Tien Khee Ng,et al.  Perovskite Nanocrystals as a Color Converter for Visible Light Communication , 2016 .

[3]  Charles A. Forman,et al.  Dynamic characteristics of 410 nm semipolar (202¯1¯) III-nitride laser diodes with a modulation bandwidth of over 5 GHz , 2016 .

[4]  James S. Speck,et al.  Lighting for the 21st century with laser diodes based on non-basal plane orientations of GaN , 2015 .

[5]  John E. Bowers,et al.  High speed semiconductor laser design and performance , 1987 .

[6]  Takayuki Sota,et al.  Recombination of Localized Excitons in InGaN Single- and Multiquantum-Well Structures , 1996 .

[7]  Mingming Tan,et al.  Visible light communications using a directly modulated 422 nm GaN laser diode. , 2013, Optics letters.

[8]  L. Coldren,et al.  Diode Lasers and Photonic Integrated Circuits , 1995 .

[9]  Pallab Bhattacharya,et al.  Monolithic electrically injected nanowire array edge-emitting laser on (001) silicon. , 2014, Nano letters.

[10]  Seoung-Hwan Park,et al.  Nonpolar and semipolar GaN, optical gain and efficiency , 2013, Photonics West - Optoelectronic Materials and Devices.

[11]  James S. Speck,et al.  Demonstration of low resistance ohmic contacts to p-type (202̄1̄) GaN , 2015 .

[12]  Shuji Nakamura,et al.  High-brightness semipolar (2021¯) blue InGaN/GaN superluminescent diodes for droop-free solid-state lighting and visible-light communications. , 2016, Optics letters.

[13]  Eli Yablonovitch,et al.  GHz bandwidth GaAs light-emitting diodes , 1999 .

[14]  Shuji Nakamura,et al.  2 Gbit/s data transmission from an unfiltered laser-based phosphor-converted white lighting communication system. , 2015, Optics express.

[15]  M. S. Islim,et al.  Towards 10 Gb/s orthogonal frequency division multiplexing-based visible light communication using a GaN violet micro-LED , 2017 .

[16]  Shuji Nakamura,et al.  Efficient and stable laser-driven white lighting , 2013 .

[17]  Mathew C. Schmidt,et al.  Gain comparison in polar and nonpolarsemipolar gallium-nitride-based laser diodes , 2012 .

[18]  Naoki Kobayashi,et al.  Fabrication of an InGaN multiple-quantum-well laser diode featuring high reflectivity semiconductor/air distributed Bragg reflectors , 2002 .

[19]  W. Scheibenzuber,et al.  Calculation of optical eigenmodes and gain in semipolar and nonpolar InGaN/GaN laser diodes , 2009 .

[20]  S. Denbaars,et al.  4 Gbps direct modulation of 450 nm GaN laser for high-speed visible light communication. , 2015, Optics express.

[21]  Harald Haas,et al.  What is LiFi? , 2015, 2015 European Conference on Optical Communication (ECOC).

[22]  S. Arahira,et al.  30-GHz bandwidth 1.55-μm strain-compensated InGaAlAs-InGaAsP MQW laser , 1997, IEEE Photonics Technology Letters.

[23]  Mathew C. Schmidt,et al.  Demonstration of Nonpolar m-Plane InGaN/GaN Laser Diodes , 2007 .

[24]  S. Denbaars,et al.  High luminous flux from single crystal phosphor-converted laser-based white lighting system. , 2016, Optics express.

[25]  Pallab Bhattacharya,et al.  Continuous-wave operation and differential gain of InGaN/GaN quantum dot ridge waveguide lasers (λ = 420 nm) on c-plane GaN substrate , 2012 .

[26]  Pallab Bhattacharya,et al.  Small-signal modulation and differential gain of red-emitting (λ = 630 nm) InGaN/GaN quantum dot lasers , 2013 .

[27]  D. V. Dinh,et al.  GHz bandwidth semipolar (112¯2) InGaN/GaN light-emitting diodes. , 2016, Optics letters.

[28]  M. Dawson,et al.  High-Speed Visible Light Communications Using Individual Pixels in a Micro Light-Emitting Diode Array , 2010, IEEE Photonics Technology Letters.

[29]  I. White,et al.  High Bandwidth GaN-Based Micro-LEDs for Multi-Gb/s Visible Light Communications , 2016, IEEE Photonics Technology Letters.

[30]  Yu-Chieh Chi,et al.  Going beyond 4 Gbps data rate by employing RGB laser diodes for visible light communication. , 2015, Optics express.

[31]  Shuji Nakamura,et al.  Chemically assisted ion beam etching of laser diode facets on nonpolar and semipolar orientations of GaN , 2016 .

[32]  Patrick Vogt,et al.  Facet formation for laser diodes on nonpolar and semipolar GaN , 2010 .

[33]  James S. Speck,et al.  Measurement and analysis of internal loss and injection efficiency for continuous-wave blue semipolar (202¯1¯) III-nitride laser diodes with chemically assisted ion beam etched facets , 2016 .

[34]  Jinn-Kong Sheu,et al.  GaN-Based Cyan Light-Emitting Diode with up to 1-GHz Bandwidth for High-Speed Transmission Over SI-POF , 2017, IEEE Photonics Journal.

[35]  Morteza Monavarian,et al.  High-Speed Nonpolar InGaN/GaN LEDs for Visible-Light Communication , 2017, IEEE Photonics Technology Letters.

[36]  Harald Haas,et al.  A review of gallium nitride LEDs for multi-gigabit-per-second visible light data communications , 2017 .

[37]  Takashi Miyoshi,et al.  Optical Gain Spectra of a (0001) InGaN Green Laser Diode , 2013 .

[38]  James S. Speck,et al.  High-power blue laser diodes with indium tin oxide cladding on semipolar (202¯1¯) GaN substrates , 2015 .

[39]  Ronald A. Arif,et al.  Optical gain analysis of strain-compensated InGaN–AlGaN quantum well active regions for lasers emitting at 420–500 nm , 2008, 2007 International Conference on Numerical Simulation of Optoelectronic Devices.

[40]  James S. Speck,et al.  Low-threshold-current-density AlGaN-cladding-free m-plane InGaN/GaN laser diodes , 2010 .

[41]  C. Caneau,et al.  Edge-emitting lasers with short-period semiconductor/air distributed Bragg reflector mirrors , 1997, IEEE Photonics Technology Letters.

[42]  A. David,et al.  Droop in InGaN light-emitting diodes: A differential carrier lifetime analysis , 2010 .

[43]  Shuji Nakamura,et al.  Demonstration of a III-nitride edge-emitting laser diode utilizing a GaN tunnel junction contact. , 2016, Optics express.