Interaction between single walled carbon nanotube and 1D crystal in CuX@SWCNT (X = Cl, Br, I) nanostructures

[1]  R. Püttner,et al.  X-ray absorption investigation of the electronic structure of the CuI@SWCNT nanocomposite , 2011 .

[2]  R. Püttner,et al.  Electronic Structure of CuI@SWCNT Nanocomposite Studied by X-Ray Absorption Spectroscopy , 2010 .

[3]  L. Yashina,et al.  Structure and electronic properties of AgX (X = Cl, Br, I)-intercalated single-walled carbon nanotubes , 2010 .

[4]  Riichiro Saito,et al.  Characterizing Graphene, Graphite, and Carbon Nanotubes by Raman Spectroscopy , 2010 .

[5]  D. Semenenko,et al.  Study of the electronic structure of single-walled carbon nanotubes filled with cobalt bromide , 2010 .

[6]  M. Dresselhaus,et al.  Kohn anomaly in Raman spectroscopy of single wall carbon nanotubes , 2010, 1004.5473.

[7]  A. P. Kharitonov,et al.  Comparative X-ray absorption investigation of fluorinated single-walled carbon nanotubes , 2010 .

[8]  M. Knupfer,et al.  Electronic and optical properties of alkali metal doped carbon nanotubes , 2009 .

[9]  B. Schmitt,et al.  High-resolution hard-X-ray fluorescence spectrometer , 2009 .

[10]  R. Follath,et al.  Disentanglement of the electronic properties of metallicity-selected single-walled carbon nanotubes , 2009 .

[11]  J. Hutchison,et al.  Chemical Reactions within Single-Walled Carbon Nanotube Channels , 2009 .

[12]  A. Eliseev,et al.  Preparation and properties of single-walled nanotubes filled with inorganic compounds , 2009 .

[13]  Jin Sung Park,et al.  Fermi energy dependence of the G-band resonance Raman spectra of single-wall carbon nanotubes , 2009 .

[14]  N. Grobert,et al.  The structure of 1D CuI crystals inside SWNTs , 2008, Journal of microscopy.

[15]  S. Savilov,et al.  The electronic properties of SWNTs intercalated by electron acceptors , 2008 .

[16]  N. Grobert,et al.  The Behaviour of 1D CuI Crystal@SWNT Nanocomposite under Electron Irradiation , 2008 .

[17]  L. Kavan,et al.  Development of the tangential mode in the Raman spectra of SWCNT bundles during electrochemical charging. , 2008, Nano letters.

[18]  S. Savilov,et al.  Filling of single-walled carbon nanotubes by CuI nanocrystals via capillary technique , 2007 .

[19]  J. Robertson,et al.  Optical phonons in carbon nanotubes: Kohn anomalies, Peierls distortions, and dynamic effects , 2006, cond-mat/0611693.

[20]  J. Chaboy,et al.  The interplay of the 3d9 and 3d10L electronic configurations in the copper K-edge XANES spectra of Cu(II) compounds. , 2006, Journal of synchrotron radiation.

[21]  Mark C. Hersam,et al.  Sorting carbon nanotubes by electronic structure using density differentiation , 2006, Nature nanotechnology.

[22]  M. Dresselhaus,et al.  Review on the symmetry-related properties of carbon nanotubes , 2006 .

[23]  M Newville,et al.  ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. , 2005, Journal of synchrotron radiation.

[24]  Solange B. Fagan,et al.  Electronic properties of Ag- and CrO3-filled single-wall carbon nanotubes , 2005 .

[25]  V. K. Adamchuk,et al.  Low-lying unoccupied electronic states in 3d transition-metal fluorides probed by NEXAFS at the F 1s threshold , 2005 .

[26]  M. Knupfer,et al.  Electronic properties of FeCl 3 -intercalated single-wall carbon nanotubes , 2004 .

[27]  R. Follath,et al.  Commissioning results and performance of the high-resolution Russian–German Beamline at BESSY II , 2003 .

[28]  Malcolm L. H. Green,et al.  Structural characterization of atomically regulated nanocrystals formed within single-walled carbon nanotubes using electron microscopy. , 2002, Accounts of chemical research.

[29]  M. Monthioux Filling single-wall carbon nanotubes , 2002 .

[30]  Jean-Louis Bantignies,et al.  Stoichiometry dependence of the Raman spectrum of alkali-doped single-wall carbon nanotubes , 2001 .

[31]  M Newville,et al.  IFEFFIT: interactive XAFS analysis and FEFF fitting. , 2001, Journal of synchrotron radiation.

[32]  Malcolm L. H. Green,et al.  Two layer 4:4 co-ordinated KI crystals grown within single walled carbon nanotubes , 2000 .

[33]  J. Rehr,et al.  Theoretical approaches to x-ray absorption fine structure , 2000 .

[34]  Stéphane Rols,et al.  Resonant Raman study of the structure and electronic properties of single-wall carbon nanotubes , 2000 .

[35]  H. Kataura,et al.  Optical Properties of Single-Wall Carbon Nanotubes , 1999 .

[36]  Patrick Bernier,et al.  Tuning and monitoring the electronic structure of carbon nanotubes , 1999 .

[37]  C. Lieber,et al.  Atomic structure and electronic properties of single-walled carbon nanotubes , 1998, Nature.

[38]  Rossi,et al.  Studies of copper valence states with Cu L3 x-ray-absorption spectroscopy. , 1989, Physical review. B, Condensed matter.

[39]  K. Hodgson,et al.  X-ray absorption edge determination of the oxidation state and coordination number of copper: application to the type 3 site in Rhus vernicifera laccase and its reaction with oxygen , 1987 .

[40]  T. Yokoyama,et al.  Polarized Cu K-edge XANES of square planar CuCl42− ion. Experimental and theoretical evidence for shake-down phenomena , 1984 .

[41]  Dirk M. Guldi,et al.  Carbon nanotubes--electronic/electrochemical properties and application for nanoelectronics and photonics. , 2009, Chemical Society reviews.

[42]  Nicole Grobert,et al.  Carbon nanotubes – becoming clean , 2007 .

[43]  M. Dresselhaus,et al.  Physical properties of carbon nanotubes , 1998 .

[44]  Malcolm L. H. Green,et al.  The opening and filling of single walled carbon nanotubes (SWTs) , 1998 .

[45]  E. Westhof,et al.  Structure and electronic properties of DNA. , 1978, Molecular biology, biochemistry, and biophysics.