Interaction between single walled carbon nanotube and 1D crystal in CuX@SWCNT (X = Cl, Br, I) nanostructures
暂无分享,去创建一个
Lada V. Yashina | A. V. Generalov | Bert Freitag | N. A. Kiselev | Andrei A. Eliseev | Maria Brzhezinskaya | Maarten Nachtegaal | M. Nachtegaal | L. Yashina | A. Eliseev | M. Brzhezinskaya | N. Verbitskiy | A. Lukashin | B. Freitag | Y. Zubavichus | A. Generalov | Marianna V. Kharlamova | M. Kharlamova | N. I. Verbitskiy | M. V. Chernysheva | Alexey V. Lukashin | A. S. Kumskov | Alexander S. Vinogradov | Yan V. Zubavichus | E. Kleimenov | N. Kiselev | A. Vinogradov | A. Kumskov | E. Kleimenov | M. Chernysheva
[1] R. Püttner,et al. X-ray absorption investigation of the electronic structure of the CuI@SWCNT nanocomposite , 2011 .
[2] R. Püttner,et al. Electronic Structure of CuI@SWCNT Nanocomposite Studied by X-Ray Absorption Spectroscopy , 2010 .
[3] L. Yashina,et al. Structure and electronic properties of AgX (X = Cl, Br, I)-intercalated single-walled carbon nanotubes , 2010 .
[4] Riichiro Saito,et al. Characterizing Graphene, Graphite, and Carbon Nanotubes by Raman Spectroscopy , 2010 .
[5] D. Semenenko,et al. Study of the electronic structure of single-walled carbon nanotubes filled with cobalt bromide , 2010 .
[6] M. Dresselhaus,et al. Kohn anomaly in Raman spectroscopy of single wall carbon nanotubes , 2010, 1004.5473.
[7] A. P. Kharitonov,et al. Comparative X-ray absorption investigation of fluorinated single-walled carbon nanotubes , 2010 .
[8] M. Knupfer,et al. Electronic and optical properties of alkali metal doped carbon nanotubes , 2009 .
[9] B. Schmitt,et al. High-resolution hard-X-ray fluorescence spectrometer , 2009 .
[10] R. Follath,et al. Disentanglement of the electronic properties of metallicity-selected single-walled carbon nanotubes , 2009 .
[11] J. Hutchison,et al. Chemical Reactions within Single-Walled Carbon Nanotube Channels , 2009 .
[12] A. Eliseev,et al. Preparation and properties of single-walled nanotubes filled with inorganic compounds , 2009 .
[13] Jin Sung Park,et al. Fermi energy dependence of the G-band resonance Raman spectra of single-wall carbon nanotubes , 2009 .
[14] N. Grobert,et al. The structure of 1D CuI crystals inside SWNTs , 2008, Journal of microscopy.
[15] S. Savilov,et al. The electronic properties of SWNTs intercalated by electron acceptors , 2008 .
[16] N. Grobert,et al. The Behaviour of 1D CuI Crystal@SWNT Nanocomposite under Electron Irradiation , 2008 .
[17] L. Kavan,et al. Development of the tangential mode in the Raman spectra of SWCNT bundles during electrochemical charging. , 2008, Nano letters.
[18] S. Savilov,et al. Filling of single-walled carbon nanotubes by CuI nanocrystals via capillary technique , 2007 .
[19] J. Robertson,et al. Optical phonons in carbon nanotubes: Kohn anomalies, Peierls distortions, and dynamic effects , 2006, cond-mat/0611693.
[20] J. Chaboy,et al. The interplay of the 3d9 and 3d10L electronic configurations in the copper K-edge XANES spectra of Cu(II) compounds. , 2006, Journal of synchrotron radiation.
[21] Mark C. Hersam,et al. Sorting carbon nanotubes by electronic structure using density differentiation , 2006, Nature nanotechnology.
[22] M. Dresselhaus,et al. Review on the symmetry-related properties of carbon nanotubes , 2006 .
[23] M Newville,et al. ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. , 2005, Journal of synchrotron radiation.
[24] Solange B. Fagan,et al. Electronic properties of Ag- and CrO3-filled single-wall carbon nanotubes , 2005 .
[25] V. K. Adamchuk,et al. Low-lying unoccupied electronic states in 3d transition-metal fluorides probed by NEXAFS at the F 1s threshold , 2005 .
[26] M. Knupfer,et al. Electronic properties of FeCl 3 -intercalated single-wall carbon nanotubes , 2004 .
[27] R. Follath,et al. Commissioning results and performance of the high-resolution Russian–German Beamline at BESSY II , 2003 .
[28] Malcolm L. H. Green,et al. Structural characterization of atomically regulated nanocrystals formed within single-walled carbon nanotubes using electron microscopy. , 2002, Accounts of chemical research.
[29] M. Monthioux. Filling single-wall carbon nanotubes , 2002 .
[30] Jean-Louis Bantignies,et al. Stoichiometry dependence of the Raman spectrum of alkali-doped single-wall carbon nanotubes , 2001 .
[31] M Newville,et al. IFEFFIT: interactive XAFS analysis and FEFF fitting. , 2001, Journal of synchrotron radiation.
[32] Malcolm L. H. Green,et al. Two layer 4:4 co-ordinated KI crystals grown within single walled carbon nanotubes , 2000 .
[33] J. Rehr,et al. Theoretical approaches to x-ray absorption fine structure , 2000 .
[34] Stéphane Rols,et al. Resonant Raman study of the structure and electronic properties of single-wall carbon nanotubes , 2000 .
[35] H. Kataura,et al. Optical Properties of Single-Wall Carbon Nanotubes , 1999 .
[36] Patrick Bernier,et al. Tuning and monitoring the electronic structure of carbon nanotubes , 1999 .
[37] C. Lieber,et al. Atomic structure and electronic properties of single-walled carbon nanotubes , 1998, Nature.
[38] Rossi,et al. Studies of copper valence states with Cu L3 x-ray-absorption spectroscopy. , 1989, Physical review. B, Condensed matter.
[39] K. Hodgson,et al. X-ray absorption edge determination of the oxidation state and coordination number of copper: application to the type 3 site in Rhus vernicifera laccase and its reaction with oxygen , 1987 .
[40] T. Yokoyama,et al. Polarized Cu K-edge XANES of square planar CuCl42− ion. Experimental and theoretical evidence for shake-down phenomena , 1984 .
[41] Dirk M. Guldi,et al. Carbon nanotubes--electronic/electrochemical properties and application for nanoelectronics and photonics. , 2009, Chemical Society reviews.
[42] Nicole Grobert,et al. Carbon nanotubes – becoming clean , 2007 .
[43] M. Dresselhaus,et al. Physical properties of carbon nanotubes , 1998 .
[44] Malcolm L. H. Green,et al. The opening and filling of single walled carbon nanotubes (SWTs) , 1998 .
[45] E. Westhof,et al. Structure and electronic properties of DNA. , 1978, Molecular biology, biochemistry, and biophysics.