Implicit finite-difference simulations of seismic wave propagation

We propose a new finite-difference modeling method, implicit both in space and in time, for the scalar wave equation. We use a three-level implicit splitting time integration method for the temporal derivative and implicit finite-difference operators of arbitrary order for the spatial derivatives. Both the implicit splitting time integration method and the implicit spatial finite-difference operators require solving systems of linear equations. We show that it is possible to merge these two sets of linear systems, one from implicit temporal discretizations and the other from implicit spatial discretizations, to reduce the amount of computations to develop a highly efficient and accurate seismic modeling algorithm. We give the complete derivations of the implicit splitting time integration method and the implicit spatial finite-difference operators, and present the resulting discretized formulas for the scalar wave equation. We conduct a thorough numerical analysis on grid dispersions of this new implicit ...

[1]  Bengt Fornberg,et al.  Classroom Note: Calculation of Weights in Finite Difference Formulas , 1998, SIAM Rev..

[2]  Jing-Bo Chen,et al.  High-order time discretizations in seismic modeling , 2007 .

[3]  Stig Hestholm,et al.  Acoustic VTI modeling using high-order finite differences , 2009 .

[4]  Dan Kosloff,et al.  Acoustic and elastic numerical wave simulations by recursive spatial derivative operators , 2010 .

[5]  Seongjai Kim,et al.  High-order schemes for acoustic waveform simulation , 2007 .

[6]  Frequency domain modeling using implicit spatial finite difference operators , 2010 .

[7]  M. A. Dablain,et al.  The application of high-order differencing to the scalar wave equation , 1986 .

[8]  Moshe Reshef,et al.  A nonreflecting boundary condition for discrete acoustic and elastic wave equations , 1985 .

[9]  Derivation and numerical analysis of implicit time stepping schemes , 2011 .

[10]  J. S. Shang,et al.  High-Order Compact-Difference Schemes for Time-Dependent Maxwell Equations , 1999 .

[11]  Heiner Igel,et al.  Anisotropic wave propagation through finite-difference grids , 1995 .

[12]  S. Lele Compact finite difference schemes with spectral-like resolution , 1992 .

[13]  John A. Ekaterinaris,et al.  Regular Article: Implicit, High-Resolution, Compact Schemes for Gas Dynamics and Aeroacoustics , 1999 .

[14]  Larry Lines,et al.  Analysis of higher-order, finite-difference schemes in 3-D reverse-time migration , 1996 .

[15]  Implicit Splitting Finite Difference Scheme for Multi-dimensional Wave Simulation , 2007 .

[16]  Yu Zhang,et al.  Two-step Explicit Marching Method For Reverse Time Migration , 2008 .

[17]  Ralph A. Stephen,et al.  An implicit finite-difference formulation of the elastic wave equation , 1982 .

[18]  Mrinal K. Sen,et al.  A practical implicit finite-difference method: examples from seismic modelling , 2009 .

[19]  Ladislav Halada,et al.  3D Fourth-Order Staggered-Grid Finite-Difference Schemes: Stability and Grid Dispersion , 2000 .

[20]  Olav Holberg,et al.  COMPUTATIONAL ASPECTS OF THE CHOICE OF OPERATOR AND SAMPLING INTERVAL FOR NUMERICAL DIFFERENTIATION IN LARGE-SCALE SIMULATION OF WAVE PHENOMENA* , 1987 .

[21]  C. Edward High-order (space And Time) Finite-difference Modeling of the Elastic Wave Equation , 1990 .

[22]  I. R. Mufti SEISMIC MODELING IN THE IMPLICIT MODE , 1985 .

[23]  Tobin A. Driscoll,et al.  Staggered Time Integrators for Wave Equations , 2000, SIAM J. Numer. Anal..

[24]  Binzhong Zhou,et al.  Seismic scalar wave equation modeling by a convolutional differentiator , 1992 .

[25]  S. Brandsberg-Dahl,et al.  The 2004 BP Velocity Benchmark , 2005 .