Optimization algorithms for data analysis

Preface vi

[1]  M. Hestenes,et al.  Methods of conjugate gradients for solving linear systems , 1952 .

[2]  A. Hoffman,et al.  The variation of the spectrum of a normal matrix , 1953 .

[3]  Philip Wolfe,et al.  An algorithm for quadratic programming , 1956 .

[4]  Boris Polyak Some methods of speeding up the convergence of iteration methods , 1964 .

[5]  John Darzentas,et al.  Problem Complexity and Method Efficiency in Optimization , 1983 .

[6]  Jorge J. Moré,et al.  Computing a Trust Region Step , 1983 .

[7]  Jorge Nocedal,et al.  On the limited memory BFGS method for large scale optimization , 1989, Math. Program..

[8]  Bernhard E. Boser,et al.  A training algorithm for optimal margin classifiers , 1992, COLT '92.

[9]  Dimitri P. Bertsekas,et al.  On the Douglas—Rachford splitting method and the proximal point algorithm for maximal monotone operators , 1992, Math. Program..

[10]  Jean-Yves Audibert Optimization for Machine Learning , 1995 .

[11]  O. Nelles,et al.  An Introduction to Optimization , 1996, IEEE Antennas and Propagation Magazine.

[12]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[13]  Stephen J. Wright Primal-Dual Interior-Point Methods , 1997, Other Titles in Applied Mathematics.

[14]  Renato D. C. Monteiro,et al.  A nonlinear programming algorithm for solving semidefinite programs via low-rank factorization , 2003, Math. Program..

[15]  Theodore Johnson,et al.  Exploratory Data Mining and Data Cleaning , 2003 .

[16]  Corinna Cortes,et al.  Support-Vector Networks , 1995, Machine Learning.

[17]  Yurii Nesterov,et al.  Introductory Lectures on Convex Optimization - A Basic Course , 2014, Applied Optimization.

[18]  Stephen J. Wright,et al.  Simultaneous Variable Selection , 2005, Technometrics.

[19]  Yurii Nesterov,et al.  Cubic regularization of Newton method and its global performance , 2006, Math. Program..

[20]  Alexandre d'Aspremont,et al.  First-Order Methods for Sparse Covariance Selection , 2006, SIAM J. Matrix Anal. Appl..

[21]  Marc Teboulle,et al.  A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems , 2009, SIAM J. Imaging Sci..

[22]  Pablo A. Parrilo,et al.  Guaranteed Minimum-Rank Solutions of Linear Matrix Equations via Nuclear Norm Minimization , 2007, SIAM Rev..

[23]  Robert D. Nowak,et al.  Online identification and tracking of subspaces from highly incomplete information , 2010, 2010 48th Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[24]  Yi Ma,et al.  Robust principal component analysis? , 2009, JACM.

[25]  Nicholas I. M. Gould,et al.  Adaptive cubic regularisation methods for unconstrained optimization. Part I: motivation, convergence and numerical results , 2011, Math. Program..

[26]  Emmanuel J. Candès,et al.  Exact Matrix Completion via Convex Optimization , 2008, Found. Comput. Math..

[27]  Monique Laurent,et al.  Semidefinite optimization , 2019, Graphs and Geometry.

[28]  Stephen J. Wright Coordinate descent algorithms , 2015, Mathematical Programming.

[29]  Mohit Singh,et al.  A geometric alternative to Nesterov's accelerated gradient descent , 2015, ArXiv.

[30]  Stephen J. Wright,et al.  Local Convergence of an Algorithm for Subspace Identification from Partial Data , 2013, Found. Comput. Math..

[31]  Martin J. Wainwright,et al.  Fast low-rank estimation by projected gradient descent: General statistical and algorithmic guarantees , 2015, ArXiv.

[32]  Constantine Caramanis,et al.  Fast Algorithms for Robust PCA via Gradient Descent , 2016, NIPS.