A Novel Group Search Optimizer Inspired by Animal Behavioural Ecology

In this paper, we propose a novel optimization algorithm, group search optimizer (GSO), which is inspired by animal searching behaviour and group living theory. The algorithm is based on the Producer-Scrounger model, which assumes group members search either for 'finding' (producer) or for 'joining' (scrounger) opportunities. Animal scanning mechanisms (e.g., vision) are incorporated to develop the algorithm. We also employ 'rangers' which perform random walks to avoid entrapment in local minima. When tested against benchmark functions, GSO outperformed competitively with other evolutionary algorithms in terms of accuracy and convergence speed on most of the benchmark functions.

[1]  L. Giraldeau,et al.  Food exploitation: searching for the optimal joining policy. , 1999, Trends in ecology & evolution.

[2]  S. Liversedge,et al.  Saccadic eye movements and cognition , 2000, Trends in Cognitive Sciences.

[3]  R. Sibly,et al.  Producers and scroungers: A general model and its application to captive flocks of house sparrows , 1981, Animal Behaviour.

[4]  I. Couzin,et al.  Effective leadership and decision-making in animal groups on the move , 2005, Nature.

[5]  Thomas Caraco,et al.  Time Budgeting and Group Size: A Test of Theory , 1979 .

[6]  D. Harper Competitive foraging in mallards: “Ideal free’ ducks , 1982, Animal Behaviour.

[7]  Richard E. Strauss,et al.  Discrimination and classification of foraging paths produced by search-tactic models , 2004 .

[8]  L. Giraldeau,et al.  Exchangeable producer and scrounger roles in a captive flock of feral pigeons: a case for the skill pool effect , 1986, Animal Behaviour.

[9]  Hans-Paul Schwefel,et al.  Evolution and optimum seeking , 1995, Sixth-generation computer technology series.

[10]  H. Stanley,et al.  Optimizing the success of random searches , 1999, Nature.

[11]  D. Wolpert,et al.  No Free Lunch Theorems for Search , 1995 .

[12]  Wilson S. Geisler,et al.  Optimal eye movement strategies in visual search , 2005, Nature.

[13]  J. M. Smith,et al.  Optimality theory in evolutionary biology , 1990, Nature.

[14]  H. Basford,et al.  Optimal eye movement strategies in visual search , 2005 .

[15]  David B. Fogel,et al.  Evolutionary Computation: Towards a New Philosophy of Machine Intelligence , 1995 .

[16]  A. Dixon AN EXPERIMENTAL STUDY OF THE SEARCHING BEHAVIOUR OF THE PREDATORY COCCINELLID BEETLE ADALIA DECEMPUNCTATA (L.) , 1959 .

[17]  O. Mimura [Eye movements]. , 1992, Nippon Ganka Gakkai zasshi.

[18]  Marco Locatelli,et al.  A Note on the Griewank Test Function , 2003, J. Glob. Optim..

[19]  H. Ronald Pulliam,et al.  Chapter 3 – SOCIAL ORGANIZATION IN THE NONREPRODUCTIVE SEASON , 1982 .

[20]  W. J. O'brien,et al.  A new view of the predation cycle of a planktivorous fish, white crappie (Pomoxis annularis) , 1986 .

[21]  James Kennedy,et al.  Particle swarm optimization , 2002, Proceedings of ICNN'95 - International Conference on Neural Networks.

[22]  C. Clark,et al.  Foraging and Flocking Strategies: Information in an Uncertain Environment , 1984, The American Naturalist.

[23]  D. Bounds New optimization methods from physics and biology , 1987, Nature.

[24]  W. J. Bell Searching Behaviour: The Behavioural Ecology of Finding Resources , 1991 .

[25]  Charles E. Taylor Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence. Complex Adaptive Systems.John H. Holland , 1994 .

[26]  David H. Wolpert,et al.  No free lunch theorems for optimization , 1997, IEEE Trans. Evol. Comput..

[27]  Maurice Clerc,et al.  The particle swarm - explosion, stability, and convergence in a multidimensional complex space , 2002, IEEE Trans. Evol. Comput..

[28]  Thomas Bäck,et al.  Evolutionary computation: Toward a new philosophy of machine intelligence , 1997, Complex..

[29]  R. R. Krausz Living in Groups , 2013 .