Information-theoretic upper and lower bounds for statistical estimation
暂无分享,去创建一个
[1] Andrew R. Barron,et al. Minimum complexity density estimation , 1991, IEEE Trans. Inf. Theory.
[2] Ron Meir,et al. Generalization Error Bounds for Bayesian Mixture Algorithms , 2003, J. Mach. Learn. Res..
[3] S. R. Jammalamadaka,et al. Empirical Processes in M-Estimation , 2001 .
[4] J. Picard,et al. Statistical learning theory and stochastic optimization : École d'eté de probabilités de Saint-Flour XXXI - 2001 , 2004 .
[5] S. Geer. Empirical Processes in M-Estimation , 2000 .
[6] Richard E. Blahut. Information bounds of the Fano-Kullback type , 1976, IEEE Trans. Inf. Theory.
[7] Olivier Catoni,et al. Statistical learning theory and stochastic optimization , 2004 .
[8] Yuhong Yang,et al. Information-theoretic determination of minimax rates of convergence , 1999 .
[9] Tong Zhang,et al. Learning Bounds for a Generalized Family of Bayesian Posterior Distributions , 2003, NIPS.
[10] W. Hoeffding. Probability Inequalities for sums of Bounded Random Variables , 1963 .
[11] O. Catoni. A PAC-Bayesian approach to adaptive classification , 2004 .
[12] Jon A. Wellner,et al. Weak Convergence and Empirical Processes: With Applications to Statistics , 1996 .
[13] Sergio Verdú,et al. Generalizing the Fano inequality , 1994, IEEE Trans. Inf. Theory.
[14] Matthias W. Seeger,et al. PAC-Bayesian Generalisation Error Bounds for Gaussian Process Classification , 2003, J. Mach. Learn. Res..
[15] P. Massart,et al. Rates of convergence for minimum contrast estimators , 1993 .
[16] Tong Zhang. From ɛ-entropy to KL-entropy: Analysis of minimum information complexity density estimation , 2006, math/0702653.
[17] David A. McAllester. PAC-Bayesian model averaging , 1999, COLT '99.