Transformers in Medical Imaging: A Survey

Following unprecedented success on the natural language tasks, Transformers have been successfully applied to several computer vision problems, achieving state-of-the-art results and prompting researchers to reconsider the supremacy of convolutional neural networks (CNNs) as de facto operators. Capitalizing on these advances in computer vision, the medical imaging field has also witnessed growing interest for Transformers that can capture global context compared to CNNs with local receptive fields. Inspired from this transition, in this survey, we attempt to provide a comprehensive review of the applications of Transformers in medical imaging covering various aspects, ranging from recently proposed architectural designs to unsolved issues. Specifically, we survey the use of Transformers in medical image segmentation, detection, classification, reconstruction, synthesis, registration, clinical report generation, and other tasks. In particular, for each of these applications, we develop taxonomy, identify application-specific challenges as well as provide insights to solve them, and highlight recent trends. Further, we provide a critical discussion of the field’s current state as a whole, including the identification of key challenges, open problems, and outlining promising future directions. We hope this survey will ignite further interest in the community and provide researchers with an up-to-date reference regarding applications of Transformer models in medical imaging. Finally, to cope with the rapid development in this field, we intend to regularly update the relevant latest papers and their open-source implementations at https://github.com/fahadshamshad/awesome-transformers-in-medical-imaging.

[1]  Huazhu Fu,et al.  A Multi-Branch Hybrid Transformer Networkfor Corneal Endothelial Cell Segmentation , 2021, MICCAI.

[2]  Chengeng Liu,et al.  Automatic Diagnosis of COVID-19 Using a tailored Transformer-Like Network , 2021, Journal of Physics: Conference Series.

[3]  Wen Gao,et al.  Pre-Trained Image Processing Transformer , 2020, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[4]  Yabo Fu,et al.  Deep Learning in Multi-organ Segmentation , 2020, ArXiv.

[5]  Kaiming He,et al.  Feature Pyramid Networks for Object Detection , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[6]  Achleshwar Luthra,et al.  MedSkip: Medical Report Generation Using Skip Connections and Integrated Attention , 2021, 2021 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW).

[7]  Eric P. Xing,et al.  Knowledge-driven Encode, Retrieve, Paraphrase for Medical Image Report Generation , 2019, AAAI.

[8]  Xiaojun Chang,et al.  Auxiliary signal-guided knowledge encoder-decoder for medical report generation , 2020, World Wide Web.

[9]  Glenn M. Fung,et al.  Nyströmformer: A Nyström-Based Algorithm for Approximating Self-Attention , 2021, AAAI.

[10]  Yan Wang,et al.  SpecTr: Spectral Transformer for Hyperspectral Pathology Image Segmentation , 2021, ArXiv.

[11]  Yan Wang,et al.  TransUNet: Transformers Make Strong Encoders for Medical Image Segmentation , 2021, ArXiv.

[12]  Shuicheng Yan,et al.  VOLO: Vision Outlooker for Visual Recognition , 2021, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[13]  Yoshua Bengio,et al.  Neural Machine Translation by Jointly Learning to Align and Translate , 2014, ICLR.

[14]  Thomas L. Griffiths,et al.  Are Convolutional Neural Networks or Transformers more like human vision? , 2021, ArXiv.

[15]  Vasiliki Kougia,et al.  A Survey on Biomedical Image Captioning , 2019, Proceedings of the Second Workshop on Shortcomings in Vision and Language.

[16]  Anne E Carpenter,et al.  Nucleus segmentation across imaging experiments: the 2018 Data Science Bowl , 2019, Nature Methods.

[17]  Marcel Worring,et al.  DeepOpht: Medical Report Generation for Retinal Images via Deep Models and Visual Explanation , 2020, 2021 IEEE Winter Conference on Applications of Computer Vision (WACV).

[18]  Chun-Nan Hsu,et al.  Weakly Supervised Contrastive Learning for Chest X-Ray Report Generation , 2021, EMNLP.

[19]  Alexander M. Rush,et al.  Encoder-Agnostic Adaptation for Conditional Language Generation , 2019, ArXiv.

[20]  Shekoofeh Azizi,et al.  Big Self-Supervised Models Advance Medical Image Classification , 2021, 2021 IEEE/CVF International Conference on Computer Vision (ICCV).

[21]  Vaibhava Goel,et al.  Self-Critical Sequence Training for Image Captioning , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[22]  Joni-Kristian Kämäräinen,et al.  The DIARETDB1 Diabetic Retinopathy Database and Evaluation Protocol , 2007, BMVC.

[23]  David Koff,et al.  COVID-Net CT-2: Enhanced Deep Neural Networks for Detection of COVID-19 From Chest CT Images Through Bigger, More Diverse Learning , 2021, Frontiers in Medicine.

[24]  Allan Tucker,et al.  Estimating Uncertainty and Interpretability in Deep Learning for Coronavirus (COVID-19) Detection , 2020, ArXiv.

[25]  Eric C. Frey,et al.  ViT-V-Net: Vision Transformer for Unsupervised Volumetric Medical Image Registration , 2021, ArXiv.

[26]  Yitian Zhao,et al.  TransBridge: A Lightweight Transformer for Left Ventricle Segmentation in Echocardiography , 2021, ASMUS@MICCAI.

[27]  Jun Ki Min,et al.  Overview of Deep Learning in Gastrointestinal Endoscopy , 2019, Gut and liver.

[28]  Mamun Bin Ibne Reaz,et al.  Can AI Help in Screening Viral and COVID-19 Pneumonia? , 2020, IEEE Access.

[29]  Pingkun Yan,et al.  Deep learning in medical image registration: a survey , 2020, Machine Vision and Applications.

[30]  Thomas de Lange,et al.  Kvasir-SEG: A Segmented Polyp Dataset , 2019, MMM.

[31]  Qianni Zhang,et al.  AGMB-Transformer: Anatomy-Guided Multi-Branch Transformer Network for Automated Evaluation of Root Canal Therapy , 2021, IEEE Journal of Biomedical and Health Informatics.

[32]  Tufve Nyholm,et al.  MR and CT data with multiobserver delineations of organs in the pelvic area—Part of the Gold Atlas project , 2018, Medical physics.

[33]  Manish Dixit,et al.  A Review of Image Enhancement Techniques in Medical Imaging , 2021 .

[34]  François Chollet,et al.  Xception: Deep Learning with Depthwise Separable Convolutions , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[35]  Nima Tajbakhsh,et al.  UNet++: Redesigning Skip Connections to Exploit Multiscale Features in Image Segmentation , 2020, IEEE Transactions on Medical Imaging.

[36]  James S. Duncan,et al.  Biomedical Imaging and Analysis in the Age of Big Data and Deep Learning , 2020, Proc. IEEE.

[37]  Ralph Roskies,et al.  Fourier Descriptors for Plane Closed Curves , 1972, IEEE Transactions on Computers.

[38]  Stephan Günnemann,et al.  OODformer: Out-Of-Distribution Detection Transformer , 2021, BMVC.

[39]  A. Gholipour,et al.  Convolution-Free Medical Image Segmentation using Transformers , 2021, International Conference on Medical Image Computing and Computer-Assisted Intervention.

[40]  Yuxing Tang,et al.  XLSor: A Robust and Accurate Lung Segmentor on Chest X-Rays Using Criss-Cross Attention and Customized Radiorealistic Abnormalities Generation , 2018, MIDL.

[41]  Adam P. Harrison,et al.  Interpretable Medical Image Classification with Self-Supervised Anatomical Embedding and Prior Knowledge , 2021 .

[42]  Junwen Pan,et al.  Transformer for Polyp Detection , 2021, ArXiv.

[43]  Kevin Smith,et al.  Is it Time to Replace CNNs with Transformers for Medical Images? , 2021, ArXiv.

[44]  Hongyu Zhao,et al.  Low-Rank Modeling and Its Applications in Image Analysis , 2014, ACM Comput. Surv..

[45]  Aaron Defazio,et al.  End-to-End Variational Networks for Accelerated MRI Reconstruction , 2020, MICCAI.

[46]  Weiwen Wu,et al.  Multi-Domain Integrative Swin Transformer Network for Sparse-View Tomographic Reconstruction , 2021, SSRN Electronic Journal.

[47]  Josien P. W. Pluim,et al.  Not‐so‐supervised: A survey of semi‐supervised, multi‐instance, and transfer learning in medical image analysis , 2018, Medical Image Anal..

[48]  Yue Wu,et al.  Claw U-Net: A Unet-based Network with Deep Feature Concatenation for Scleral Blood Vessel Segmentation , 2020, ArXiv.

[49]  Tolga Çukur,et al.  Unsupervised MRI Reconstruction via Zero-Shot Learned Adversarial Transformers , 2021, IEEE Transactions on Medical Imaging.

[50]  Guangming Lu,et al.  DS-TransUNet: Dual Swin Transformer U-Net for Medical Image Segmentation , 2021, IEEE Transactions on Instrumentation and Measurement.

[51]  Ming Y. Lu,et al.  Multimodal Co-Attention Transformer for Survival Prediction in Gigapixel Whole Slide Images , 2021, 2021 IEEE/CVF International Conference on Computer Vision (ICCV).

[52]  Reyer Zwiggelaar,et al.  Automated Breast Ultrasound Lesions Detection Using Convolutional Neural Networks , 2018, IEEE Journal of Biomedical and Health Informatics.

[53]  Yuhao Zhang,et al.  Improving Factual Completeness and Consistency of Image-to-Text Radiology Report Generation , 2020, NAACL.

[54]  Matthias Bethge,et al.  Partial success in closing the gap between human and machine vision , 2021, ArXiv.

[55]  Michael M Lell,et al.  Recent and Upcoming Technological Developments in Computed Tomography: High Speed, Low Dose, Deep Learning, Multienergy. , 2020, Investigative radiology.

[56]  Arnab Bhattacharjee,et al.  xViTCOS: Explainable Vision Transformer Based COVID-19 Screening Using Radiography , 2021, IEEE Journal of Translational Engineering in Health and Medicine.

[57]  Yi Li,et al.  Deformable Convolutional Networks , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[58]  Harald Kittler,et al.  Descriptor : The HAM 10000 dataset , a large collection of multi-source dermatoscopic images of common pigmented skin lesions , 2018 .

[59]  Georg Heigold,et al.  An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale , 2021, ICLR.

[60]  Stanislav Fort,et al.  Exploring the Limits of Out-of-Distribution Detection , 2021, NeurIPS.

[61]  Hao Chen,et al.  Gland segmentation in colon histology images: The glas challenge contest , 2016, Medical Image Anal..

[62]  David J. Foran,et al.  Chest X-ray image phase features for improved diagnosis of COVID-19 using convolutional neural network , 2020, International Journal of Computer Assisted Radiology and Surgery.

[63]  P. Lakhani,et al.  Deep Learning at Chest Radiography: Automated Classification of Pulmonary Tuberculosis by Using Convolutional Neural Networks. , 2017, Radiology.

[64]  Kilian Q. Weinberger,et al.  BERTScore: Evaluating Text Generation with BERT , 2019, ICLR.

[65]  James Bailey,et al.  Understanding Adversarial Attacks on Deep Learning Based Medical Image Analysis Systems , 2019, Pattern Recognit..

[66]  Pengtao Xie,et al.  On the Automatic Generation of Medical Imaging Reports , 2017, ACL.

[67]  Arvid Lundervold,et al.  An overview of deep learning in medical imaging focusing on MRI , 2018, Zeitschrift fur medizinische Physik.

[68]  Boah Kim,et al.  Federated Split Vision Transformer for COVID-19 CXR Diagnosis using Task-Agnostic Training , 2021, arXiv.org.

[69]  Changming Sun,et al.  RA-UNet: A Hybrid Deep Attention-Aware Network to Extract Liver and Tumor in CT Scans , 2018, Frontiers in Bioengineering and Biotechnology.

[70]  T. Hayajneh EAI Endorsed Transactions on Pervasive Health and Technology , 2018 .

[71]  Noel C. F. Codella,et al.  Skin Lesion Analysis Toward Melanoma Detection 2018: A Challenge Hosted by the International Skin Imaging Collaboration (ISIC) , 2019, ArXiv.

[72]  Qi Bi,et al.  MIL-VT: Multiple Instance Learning Enhanced Vision Transformer for Fundus Image Classification , 2021, MICCAI.

[73]  Ralph R. Martin,et al.  Attention mechanisms in computer vision: A survey , 2021, Computational Visual Media.

[74]  Hui Gao,et al.  Individual tooth segmentation from CT images using level set method with shape and intensity prior , 2010, Pattern Recognit..

[75]  Marcin Grzegorzek,et al.  GasHis-Transformer: A Multi-scale Visual Transformer Approach for Gastric Histopathology Image Classification , 2021, ArXiv.

[76]  Haimiao Zhang,et al.  DuDoTrans: Dual-Domain Transformer Provides More Attention for Sinogram Restoration in Sparse-View CT Reconstruction , 2021, ArXiv.

[77]  Han Fang,et al.  Linformer: Self-Attention with Linear Complexity , 2020, ArXiv.

[78]  Hao Chen,et al.  A Multi-Organ Nucleus Segmentation Challenge , 2020, IEEE Transactions on Medical Imaging.

[79]  Jinfeng Yi,et al.  On the Adversarial Robustness of Visual Transformers , 2021, ArXiv.

[80]  Ronald M. Summers,et al.  A Review of Deep Learning in Medical Imaging: Imaging Traits, Technology Trends, Case Studies With Progress Highlights, and Future Promises , 2020, Proceedings of the IEEE.

[81]  Tobias Knopp,et al.  OpenMPIData: An initiative for freely accessible magnetic particle imaging data , 2019, Data in brief.

[82]  Ling Shao,et al.  PraNet: Parallel Reverse Attention Network for Polyp Segmentation , 2020, MICCAI.

[83]  Clement J. McDonald,et al.  Preparing a collection of radiology examinations for distribution and retrieval , 2015, J. Am. Medical Informatics Assoc..

[84]  Parashkev Nachev,et al.  Computer Methods and Programs in Biomedicine NiftyNet: a deep-learning platform for medical imaging , 2022 .

[85]  J. E. Anusha Linda Kostka,et al.  A Review of the Medical Image Segmentation Algorithms , 2019 .

[86]  Alexandros G. Dimakis,et al.  Deep Learning Techniques for Inverse Problems in Imaging , 2020, IEEE Journal on Selected Areas in Information Theory.

[87]  Ashish Vaswani,et al.  Stand-Alone Self-Attention in Vision Models , 2019, NeurIPS.

[88]  Max Welling,et al.  Semi-Supervised Classification with Graph Convolutional Networks , 2016, ICLR.

[89]  Guangtao Zhai,et al.  Transclaw U-Net: Claw U-Net With Transformers for Medical Image Segmentation , 2021, 2022 5th International Conference on Information Communication and Signal Processing (ICICSP).

[90]  Juntao Jiang,et al.  COVID-19 Detection in Chest X-ray Images Using Swin-Transformer and Transformer in Transformer , 2021, ArXiv.

[91]  Tomas E. Ward,et al.  Generative Adversarial Networks in Computer Vision , 2019, ACM Comput. Surv..

[92]  Zhenghong Xiao,et al.  Vision transformer-based recognition of diabetic retinopathy grade. , 2021, Medical physics.

[93]  Rohan Ramanath,et al.  An Attentive Survey of Attention Models , 2019, ACM Trans. Intell. Syst. Technol..

[94]  N. Papanikolopoulos,et al.  2021 Kidney and Kidney Tumor Segmentation Challenge , 2020 .

[95]  Daguang Xu,et al.  UNETR: Transformers for 3D Medical Image Segmentation , 2021, 2022 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV).

[96]  Christoph Reich,et al.  Attention-Based Transformers for Instance Segmentation of Cells in Microstructures , 2020, 2020 IEEE International Conference on Bioinformatics and Biomedicine (BIBM).

[97]  Daniel L. Rubin,et al.  Out of Distribution Detection for Medical Images , 2021, UNSURE/PIPPI@MICCAI.

[98]  Bennamoun,et al.  Untrained Neural Network Priors for Inverse Imaging Problems: A Survey , 2022, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[99]  Rao Muhammad Anwer,et al.  Multi-modal Transformers Excel at Class-agnostic Object Detection , 2021, ArXiv.

[100]  Shobha Venkataraman,et al.  CrypTen: Secure Multi-Party Computation Meets Machine Learning , 2021, NeurIPS.

[101]  Mykel J. Kochenderfer,et al.  Towards Proving the Adversarial Robustness of Deep Neural Networks , 2017, FVAV@iFM.

[102]  T. Kwee,et al.  Chest CT in COVID-19: What the Radiologist Needs to Know , 2020, Radiographics : a review publication of the Radiological Society of North America, Inc.

[103]  Zheng Zhang,et al.  Disentangled Non-Local Neural Networks , 2020, ECCV.

[104]  Xueguang Yuan,et al.  MISSFormer: An Effective Medical Image Segmentation Transformer , 2021, ArXiv.

[105]  Honggang Yang,et al.  Fundus Disease Image Classification based on Improved Transformer , 2021, 2021 International Conference on Neuromorphic Computing (ICNC).

[106]  Murat Dundar,et al.  Multiple Instance Learning for Computer Aided Diagnosis , 2006, NIPS.

[107]  Hai Shu,et al.  BiTr-Unet: a CNN-Transformer Combined Network for MRI Brain Tumor Segmentation , 2021, BrainLes@MICCAI.

[108]  Romain Laroche,et al.  The Emergence of the Shape Bias Results from Communicative Efficiency , 2021, CONLL.

[109]  Wenxuan Wang,et al.  TransBTS: Multimodal Brain Tumor Segmentation Using Transformer , 2021, MICCAI.

[110]  Alper Yilmaz,et al.  Pocformer: A Lightweight Transformer Architecture For Detection Of Covid-19 Using Point Of Care Ultrasound , 2021, 2021 IEEE International Conference on Image Processing (ICIP).

[111]  Sergio Escalera,et al.  Multi-Centre, Multi-Vendor and Multi-Disease Cardiac Segmentation: The M&Ms Challenge , 2021, IEEE Transactions on Medical Imaging.

[112]  Andrew H. Beck,et al.  Diagnostic Assessment of Deep Learning Algorithms for Detection of Lymph Node Metastases in Women With Breast Cancer , 2017, JAMA.

[113]  Sehat Ullah,et al.  Medical image registration in image guided surgery: Issues, challenges and research opportunities , 2017 .

[114]  X. He,et al.  Benchmarking Deep Learning Models and Automated Model Design for COVID-19 Detection with Chest CT Scans , 2020, medRxiv.

[115]  Hamid Tabani,et al.  Improving the Efficiency of Transformers for Resource-Constrained Devices , 2021, 2021 24th Euromicro Conference on Digital System Design (DSD).

[116]  Michal Valko,et al.  Bootstrap Your Own Latent: A New Approach to Self-Supervised Learning , 2020, NeurIPS.

[117]  Jin Keun Seo,et al.  Deep learning for undersampled MRI reconstruction , 2017, Physics in medicine and biology.

[118]  Pengfei Xiong,et al.  Pyramid Attention Network for Semantic Segmentation , 2018, BMVC.

[119]  Xiangyang Ji,et al.  TransMIL: Transformer based Correlated Multiple Instance Learning for Whole Slide Image Classication , 2021, NeurIPS.

[120]  Dhiraj Maji,et al.  Attention Res-UNet with Guided Decoder for semantic segmentation of brain tumors , 2022, Biomed. Signal Process. Control..

[121]  Abhishek Iyer,et al.  Eformer: Edge Enhancement based Transformer for Medical Image Denoising , 2021, ArXiv.

[122]  Daniel S. Kermany,et al.  Identifying Medical Diagnoses and Treatable Diseases by Image-Based Deep Learning , 2018, Cell.

[123]  Eugenio Culurciello,et al.  LinkNet: Exploiting encoder representations for efficient semantic segmentation , 2017, 2017 IEEE Visual Communications and Image Processing (VCIP).

[124]  Vishal M. Patel,et al.  Medical Transformer: Gated Axial-Attention for Medical Image Segmentation , 2021, MICCAI.

[125]  Tianjian Chen,et al.  Federated Machine Learning: Concept and Applications , 2019 .

[126]  Yin Dai,et al.  TransMed: Transformers Advance Multi-Modal Medical Image Classification , 2021, Diagnostics.

[127]  Etai Jacob,et al.  Explainable Transformer-Based Neural Network forthe Prediction of Survival Outcomes in Non-SmallCell Lung Cancer (NSCLC) , 2021, medRxiv.

[128]  Ilya Sutskever,et al.  Language Models are Unsupervised Multitask Learners , 2019 .

[129]  William P. Segars,et al.  TransMorph: Transformer for unsupervised medical image registration , 2021, ArXiv.

[130]  Nilay Ganatra A Comprehensive Study of Applying Object Detection Methods for Medical Image Analysis , 2021, 2021 8th International Conference on Computing for Sustainable Global Development (INDIACom).

[131]  Ramesh Raskar,et al.  Split learning for health: Distributed deep learning without sharing raw patient data , 2018, ArXiv.

[132]  Xiping Hu,et al.  More than Encoder: Introducing Transformer Decoder to Upsample , 2021, ArXiv.

[133]  Fahad Shahbaz Khan,et al.  Transformers in Vision: A Survey , 2021, ACM Comput. Surv..

[134]  Yong Xia,et al.  Unified 2D and 3D Pre-training for Medical Image classification and Segmentation , 2021, ArXiv.

[135]  Johannes Rückert,et al.  Radiology Objects in COntext (ROCO): A Multimodal Image Dataset , 2018, CVII-STENT/LABELS@MICCAI.

[136]  Iasonas Kokkinos,et al.  DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs , 2016, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[137]  Cordelia Schmid,et al.  ViViT: A Video Vision Transformer , 2021, 2021 IEEE/CVF International Conference on Computer Vision (ICCV).

[138]  Ji Li,et al.  FTRANS: energy-efficient acceleration of transformers using FPGA , 2020, ISLPED.

[139]  Ankur Teredesai,et al.  Interpretable Machine Learning in Healthcare , 2018, 2018 IEEE International Conference on Healthcare Informatics (ICHI).

[140]  Rich Caruana,et al.  Multitask Learning , 1998, Encyclopedia of Machine Learning and Data Mining.

[141]  Matthieu Cord,et al.  Training data-efficient image transformers & distillation through attention , 2020, ICML.

[142]  Xiaogang Wang,et al.  Pyramid Scene Parsing Network , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[143]  Ronald M. Summers,et al.  A large annotated medical image dataset for the development and evaluation of segmentation algorithms , 2019, ArXiv.

[144]  Alan C. Bovik,et al.  Image information and visual quality , 2004, 2004 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[145]  Furu Wei,et al.  BEiT: BERT Pre-Training of Image Transformers , 2021, ArXiv.

[146]  Qing-Long Zhang,et al.  SA-Net: Shuffle Attention for Deep Convolutional Neural Networks , 2021, ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[147]  Yonina C. Eldar,et al.  Algorithm Unrolling: Interpretable, Efficient Deep Learning for Signal and Image Processing , 2021, IEEE Signal Processing Magazine.

[148]  J. Goodwin,et al.  Screening for Lung Cancer with Low-Dose Computed Tomography: A Systematic Review and Meta-Analysis of the Baseline Findings of Randomized Controlled Trials , 2010, Journal of thoracic oncology : official publication of the International Association for the Study of Lung Cancer.

[149]  Noam Shazeer,et al.  Switch Transformers: Scaling to Trillion Parameter Models with Simple and Efficient Sparsity , 2021, ArXiv.

[150]  Jinwook Choi,et al.  Medical Image Captioning Model to Convey More Details: Methodological Comparison of Feature Difference Generation , 2021, IEEE Access.

[151]  Eka Miranda,et al.  A survey of medical image classification techniques , 2016, 2016 International Conference on Information Management and Technology (ICIMTech).

[152]  Bernhard Kainz,et al.  RATCHET: Medical Transformer for Chest X-ray Diagnosis and Reporting , 2021, MICCAI.

[153]  Vincent Andrearczyk,et al.  Overview of the HECKTOR Challenge at MICCAI 2020: Automatic Head and Neck Tumor Segmentation in PET/CT , 2020, HECKTOR@MICCAI.

[154]  Yuk Ying Chung,et al.  Deep learning in generating radiology reports: A survey , 2020, Artificial Intelligence in Medicine.

[155]  Ching Y. Suen,et al.  Application of majority voting to pattern recognition: an analysis of its behavior and performance , 1997, IEEE Trans. Syst. Man Cybern. Part A.

[156]  Gang Yu,et al.  Context Prior for Scene Segmentation , 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[157]  Lukasz Kaiser,et al.  Rethinking Attention with Performers , 2020, ArXiv.

[158]  Bin Li,et al.  Deformable DETR: Deformable Transformers for End-to-End Object Detection , 2020, ICLR.

[159]  Baiying Lei,et al.  3D Deep Attentive U-Net with Transformer for Breast Tumor Segmentation from Automated Breast Volume Scanner , 2021, 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC).

[160]  Arthur Gretton,et al.  Demystifying MMD GANs , 2018, ICLR.

[161]  Abhinav Gupta,et al.  Non-local Neural Networks , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[162]  Zhengxin Dong,et al.  Method for Diagnosis of Acute Lymphoblastic Leukemia Based on ViT-CNN Ensemble Model , 2021, Comput. Intell. Neurosci..

[163]  Salim Roukos,et al.  Bleu: a Method for Automatic Evaluation of Machine Translation , 2002, ACL.

[164]  Ayoub Benali Amjoud,et al.  Automatic Generation of Chest X-ray Reports Using a Transformer-based Deep Learning Model , 2021, 2021 Fifth International Conference On Intelligent Computing in Data Sciences (ICDS).

[165]  Vishal M. Patel,et al.  Automatic real-time CNN-based neonatal brain ventricles segmentation , 2018, 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018).

[166]  A.D. Hoover,et al.  Locating blood vessels in retinal images by piecewise threshold probing of a matched filter response , 2000, IEEE Transactions on Medical Imaging.

[167]  Xiaohong Gao,et al.  COVID-VIT: Classification of COVID-19 from CT chest images based on vision transformer models , 2021, arXiv.org.

[168]  Guigang Zhang,et al.  Deep Learning , 2016, Int. J. Semantic Comput..

[169]  Kilian Q. Weinberger,et al.  Densely Connected Convolutional Networks , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[170]  Song Han,et al.  HAT: Hardware-Aware Transformers for Efficient Natural Language Processing , 2020, ACL.

[171]  Lior Wolf,et al.  Transformer Interpretability Beyond Attention Visualization , 2021, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[172]  Lukasz Kaiser,et al.  Attention is All you Need , 2017, NIPS.

[173]  Andreas K. Maier,et al.  Deep Learning Computed Tomography , 2016, MICCAI.

[174]  Sepp Hochreiter,et al.  GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium , 2017, NIPS.

[175]  Michael Gadermayr,et al.  Anomaly Detection in Medical Imaging - A Mini Review , 2021, ArXiv.

[176]  Karin M. Verspoor,et al.  FFA-IR: Towards an Explainable and Reliable Medical Report Generation Benchmark , 2021, NeurIPS Datasets and Benchmarks.

[177]  Yanling Liu,et al.  PAIP 2019: Liver cancer segmentation challenge , 2020, Medical Image Anal..

[178]  Christoph Meinel,et al.  Deep Learning for Medical Image Analysis , 2018, Journal of Pathology Informatics.

[179]  Alexander Kolesnikov,et al.  Scaling Vision Transformers , 2021, ArXiv.

[180]  Yann LeCun,et al.  MDETR - Modulated Detection for End-to-End Multi-Modal Understanding , 2021, 2021 IEEE/CVF International Conference on Computer Vision (ICCV).

[181]  Stefan Jaeger,et al.  Two public chest X-ray datasets for computer-aided screening of pulmonary diseases. , 2014, Quantitative imaging in medicine and surgery.

[182]  Shen Ge,et al.  Auto-Encoding Knowledge Graph for Unsupervised Medical Report Generation , 2021, NeurIPS.

[183]  Bruce R. Rosen,et al.  DeepNeuro: an open-source deep learning toolbox for neuroimaging , 2018, Neuroinformatics.

[184]  Chinmay Hegde,et al.  Algorithmic Aspects of Inverse Problems Using Generative Models , 2018, 2018 56th Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[185]  André F. T. Martins,et al.  Adaptively Sparse Transformers , 2019, EMNLP.

[186]  Guoping Xu,et al.  LeViT-UNet: Make Faster Encoders with Transformer for Medical Image Segmentation , 2021, PRCV.

[187]  Bram van Ginneken,et al.  A survey on deep learning in medical image analysis , 2017, Medical Image Anal..

[188]  Jeffrey A. Fessler,et al.  Image Reconstruction: From Sparsity to Data-Adaptive Methods and Machine Learning , 2019, Proceedings of the IEEE.

[189]  Ilya Sutskever,et al.  Learning Transferable Visual Models From Natural Language Supervision , 2021, ICML.

[190]  Kaiming He,et al.  Focal Loss for Dense Object Detection , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[191]  Stephen M. Moore,et al.  The Cancer Imaging Archive (TCIA): Maintaining and Operating a Public Information Repository , 2013, Journal of Digital Imaging.

[192]  Laude,et al.  FEEDBACK ON A PUBLICLY DISTRIBUTED IMAGE DATABASE: THE MESSIDOR DATABASE , 2014 .

[193]  Ming-Wei Chang,et al.  BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding , 2019, NAACL.

[194]  Fernando Vilariño,et al.  WM-DOVA maps for accurate polyp highlighting in colonoscopy: Validation vs. saliency maps from physicians , 2015, Comput. Medical Imaging Graph..

[195]  Tsung-Hui Chang,et al.  Generating Radiology Reports via Memory-driven Transformer , 2020, EMNLP.

[196]  Kibok Lee,et al.  A Simple Unified Framework for Detecting Out-of-Distribution Samples and Adversarial Attacks , 2018, NeurIPS.

[197]  Matt Berseth,et al.  ISIC 2017 - Skin Lesion Analysis Towards Melanoma Detection , 2017, ArXiv.

[198]  Christoph Meinel,et al.  Does CLIP Benefit Visual Question Answering in the Medical Domain as Much as it Does in the General Domain? , 2021, ArXiv.

[199]  Jeffrey A. Fessler,et al.  Model-Based Image Reconstruction for MRI , 2010, IEEE Signal Processing Magazine.

[200]  Geoffrey E. Hinton,et al.  A Simple Framework for Contrastive Learning of Visual Representations , 2020, ICML.

[201]  Yuankai Huo,et al.  Evaluating transformer-based semantic segmentation networks for pathological image segmentation , 2021, Medical Imaging.

[202]  C. Lawrence Zitnick,et al.  CIDEr: Consensus-based image description evaluation , 2014, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[203]  Qingming Huang,et al.  Image Saliency Detection Video Saliency Detection Co-saliency Detection Temporal RGBD Saliency Detection Motion , 2018 .

[204]  Hiroyuki Kudo,et al.  Image reconstruction for sparse-view CT and interior CT-introduction to compressed sensing and differentiated backprojection. , 2013, Quantitative imaging in medicine and surgery.

[205]  Quoc V. Le,et al.  Attention Augmented Convolutional Networks , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[206]  Mikhail Belyaev,et al.  Segthor: Segmentation of Thoracic Organs at Risk in CT Images , 2019, SegTHOR@ISBI.

[207]  Jian-Feng Cai,et al.  Data-driven tight frame construction and image denoising , 2014 .

[208]  Alexander Wong,et al.  COVID-Net: a tailored deep convolutional neural network design for detection of COVID-19 cases from chest X-ray images , 2020, Scientific reports.

[209]  Yuexian Zou,et al.  Exploring and Distilling Posterior and Prior Knowledge for Radiology Report Generation , 2021, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[210]  Bobak Mortazavi,et al.  Learning to Generate Clinically Coherent Chest X-Ray Reports , 2020, FINDINGS.

[211]  Khan Muhammad,et al.  COVID-Transformer: Interpretable COVID-19 Detection Using Vision Transformer for Healthcare , 2021, International journal of environmental research and public health.

[212]  Stephen Lin,et al.  Swin Transformer: Hierarchical Vision Transformer using Shifted Windows , 2021, 2021 IEEE/CVF International Conference on Computer Vision (ICCV).

[213]  Hossein Rabbani,et al.  Diabetic Retinopathy Grading by Digital Curvelet Transform , 2012, Comput. Math. Methods Medicine.

[214]  Feng Wu,et al.  Lesion-Aware Transformers for Diabetic Retinopathy Grading , 2021, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[215]  Henning Müller,et al.  Overview of the ImageCLEF 2018 Caption Prediction Tasks , 2018, CLEF.

[216]  Deying Kong,et al.  AFTer-UNet: Axial Fusion Transformer UNet for Medical Image Segmentation , 2021, 2022 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV).

[217]  Qichao Zhou,et al.  Boundary-Aware Transformers for Skin Lesion Segmentation , 2021, MICCAI.

[218]  Kevin Gimpel,et al.  A Baseline for Detecting Misclassified and Out-of-Distribution Examples in Neural Networks , 2016, ICLR.

[219]  Olivier Gevaert,et al.  A radiogenomic dataset of non-small cell lung cancer , 2018, Scientific Data.

[220]  Wei Wang,et al.  FAT-Net: Feature adaptive transformers for automated skin lesion segmentation , 2021, Medical Image Anal..

[221]  Tolga Çukur,et al.  Deep MRI Reconstruction with Generative Vision Transformers , 2021, MLMIR@MICCAI.

[222]  Tom Goldstein,et al.  Towards Transferable Adversarial Attacks on Vision Transformers , 2021, AAAI.

[223]  Margrit Betke,et al.  A deep learning based graph-transformer for whole slide image classification , 2021, medRxiv.

[224]  Carlos A. Silva,et al.  On the Interpretability of Artificial Intelligence in Radiology: Challenges and Opportunities. , 2020, Radiology. Artificial intelligence.

[225]  Denis Parra,et al.  A Survey on Deep Learning and Explainability for Automatic Image-based Medical Report Generation , 2020, ArXiv.

[226]  Pheng-Ann Heng,et al.  Hepatic vessel segmentation based on 3D swin-transformer with inductive biased multi-head self-attention , 2021, BMC Medical Imaging.

[227]  David Lopez-Paz,et al.  In Search of Lost Domain Generalization , 2020, ICLR.

[228]  Pingkun Yan,et al.  Reinforced Transformer for Medical Image Captioning , 2019, MLMI@MICCAI.

[229]  Fahad Shahbaz Khan,et al.  On Improving Adversarial Transferability of Vision Transformers , 2021, ArXiv.

[230]  Guang-Zhong Yang,et al.  Self-Supervised Siamese Learning on Stereo Image Pairs for Depth Estimation in Robotic Surgery , 2017, ArXiv.

[231]  Chinmay Hegde,et al.  Adversarial Token Attacks on Vision Transformers , 2021, ArXiv.

[232]  Rita Cucchiara,et al.  Meshed-Memory Transformer for Image Captioning , 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[233]  Ronald M. Summers,et al.  Deep Learning in Medical Imaging: Overview and Future Promise of an Exciting New Technique , 2016 .

[234]  Fahad Shahbaz Khan,et al.  Intriguing Properties of Vision Transformers , 2021, NeurIPS.

[235]  Nicolas Usunier,et al.  End-to-End Object Detection with Transformers , 2020, ECCV.

[236]  Yuan He,et al.  Rethinking the Design Principles of Robust Vision Transformer , 2021 .

[237]  Thomas Brox,et al.  3D U-Net: Learning Dense Volumetric Segmentation from Sparse Annotation , 2016, MICCAI.

[238]  Geert J. S. Litjens,et al.  Efficient Out-of-Distribution Detection in Digital Pathology Using Multi-Head Convolutional Neural Networks , 2020, MIDL.

[239]  Aly Fahmy,et al.  Automated radiology report generation using conditioned transformers , 2021 .

[240]  Charless C. Fowlkes,et al.  Laplacian Pyramid Reconstruction and Refinement for Semantic Segmentation , 2016, ECCV.

[241]  Antonio M. López,et al.  A Benchmark for Endoluminal Scene Segmentation of Colonoscopy Images , 2016, Journal of healthcare engineering.

[242]  Lei Xing,et al.  TransCT: Dual-Path Transformer for Low Dose Computed Tomography , 2021, MICCAI.

[243]  Andreas Veit,et al.  Understanding Robustness of Transformers for Image Classification , 2021, 2021 IEEE/CVF International Conference on Computer Vision (ICCV).

[244]  Jonathon Shlens,et al.  Scaling Local Self-Attention for Parameter Efficient Visual Backbones , 2021, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[245]  Xipeng Qiu,et al.  A Survey of Transformers , 2021, AI Open.

[246]  Xianglong Liu,et al.  Delving Deep into the Generalization of Vision Transformers under Distribution Shifts , 2021, ArXiv.

[247]  Roger G. Mark,et al.  MIMIC-CXR: A large publicly available database of labeled chest radiographs , 2019, ArXiv.

[248]  Qi Tian,et al.  Swin-Unet: Unet-like Pure Transformer for Medical Image Segmentation , 2021, ECCV Workshops.

[249]  Huazhu Fu,et al.  Accelerated Multi-Modal MR Imaging with Transformers , 2021, ArXiv.

[250]  Julien Mairal,et al.  Emerging Properties in Self-Supervised Vision Transformers , 2021, 2021 IEEE/CVF International Conference on Computer Vision (ICCV).

[251]  Jong Chul Ye,et al.  Framing U-Net via Deep Convolutional Framelets: Application to Sparse-View CT , 2017, IEEE Transactions on Medical Imaging.

[252]  Nikolaos Pappas,et al.  Transformers are RNNs: Fast Autoregressive Transformers with Linear Attention , 2020, ICML.

[253]  Yi Tay,et al.  Efficient Transformers: A Survey , 2020, ArXiv.

[254]  Ross B. Girshick,et al.  Focal Loss for Dense Object Detection , 2017, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[255]  Jiang Tian,et al.  Confidence-Guided Radiology Report Generation , 2021, ArXiv.

[256]  Curtis P. Langlotz,et al.  Video-based AI for beat-to-beat assessment of cardiac function , 2020, Nature.

[257]  A. Ruggeri,et al.  A system for the automatic estimation of morphometric parameters of corneal endothelium in alizarine red-stained images , 2010, British Journal of Ophthalmology.

[258]  Pin-Yu Chen,et al.  Vision Transformers are Robust Learners , 2021, AAAI.

[259]  Graham Cormode,et al.  Opacus: User-Friendly Differential Privacy Library in PyTorch , 2021, ArXiv.

[260]  Zhuangzhuang Zhang,et al.  Pyramid Medical Transformer for Medical Image Segmentation , 2021, ArXiv.

[261]  Wenyi Lin,et al.  Comparison of handcrafted features and convolutional neural networks for liver MR image adequacy assessment , 2020, Scientific Reports.

[262]  C. Brennan,et al.  Tumor mutational load predicts survival after immunotherapy across multiple cancer types , 2019, Nature Genetics.

[263]  Hossein Rahmani,et al.  Recent Advances of Continual Learning in Computer Vision: An Overview , 2021, ArXiv.

[264]  Dong Nie,et al.  Automated Generation of Accurate & Fluent Medical X-ray Reports , 2021, EMNLP.

[265]  Tao Lin,et al.  On the Loss Landscape of Adversarial Training: Identifying Challenges and How to Overcome Them , 2020, NeurIPS.

[266]  Geoffrey E. Hinton,et al.  ImageNet classification with deep convolutional neural networks , 2012, Commun. ACM.

[267]  Irwin Sobel,et al.  An Isotropic 3×3 image gradient operator , 1990 .

[268]  Lequan Yu,et al.  nnFormer: Interleaved Transformer for Volumetric Segmentation , 2021, ArXiv.

[269]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[270]  Dimitris N. Metaxas,et al.  UTNet: A Hybrid Transformer Architecture for Medical Image Segmentation , 2021, MICCAI.

[271]  Stefanos Kollias,et al.  MIA-COV19D: COVID-19 Detection through 3-D Chest CT Image Analysis , 2021, 2021 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW).

[272]  Stefan Rüping,et al.  Learning interpretable models , 2006 .

[273]  Baiyu Chen,et al.  Low‐dose CT for the detection and classification of metastatic liver lesions: Results of the 2016 Low Dose CT Grand Challenge , 2017, Medical physics.

[274]  Tinsu Pan,et al.  Fundamentals of Medical Imaging , 2010, The Journal of Nuclear Medicine.

[275]  S. Ní Dhubhghaill,et al.  Corneal Endothelial Cells Over the Past Decade: Are We Missing the Mark(er)? , 2019, Translational vision science & technology.

[276]  Arnav Bhavsar,et al.  Hierarchical X-Ray Report Generation via Pathology Tags and Multi Head Attention , 2020, ACCV.

[277]  Lei Zhang,et al.  A transformer-based framework for automatic COVID19 diagnosis in chest CTs , 2021, 2021 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW).

[278]  Shaohua Zheng,et al.  COTR: Convolution in Transformer Network for End to End Polyp Detection , 2021, 2021 7th International Conference on Computer and Communications (ICCC).

[279]  Russell H. Taylor,et al.  E-DSSR: Efficient Dynamic Surgical Scene Reconstruction with Transformer-based Stereoscopic Depth Perception , 2021, MICCAI.

[280]  Xin Yang,et al.  Deep Learning Techniques for Automatic MRI Cardiac Multi-Structures Segmentation and Diagnosis: Is the Problem Solved? , 2018, IEEE Transactions on Medical Imaging.

[281]  Tao Xiang,et al.  Rethinking Semantic Segmentation from a Sequence-to-Sequence Perspective with Transformers , 2020, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[282]  Chin-Yew Lin,et al.  ROUGE: A Package for Automatic Evaluation of Summaries , 2004, ACL 2004.

[283]  Holger Roth,et al.  Swin UNETR: Swin Transformers for Semantic Segmentation of Brain Tumors in MRI Images , 2022, BrainLes@MICCAI.

[284]  Plamen Angelov,et al.  SARS-CoV-2 CT-scan dataset:A large dataset of real patients CT scans for SARS-CoV-2 identification , 2020 .

[285]  M. Rousson,et al.  Γ-Convergence Approximation to Piecewise Smooth Medical Image Segmentation , 2007 .

[286]  Seyed-Ahmad Ahmadi,et al.  V-Net: Fully Convolutional Neural Networks for Volumetric Medical Image Segmentation , 2016, 2016 Fourth International Conference on 3D Vision (3DV).

[287]  Junaid Qadir,et al.  Single-Shot Retinal Image Enhancement Using Deep Image Priors , 2020, MICCAI.

[288]  Joseph Paul Cohen,et al.  COVID-19 Image Data Collection: Prospective Predictions Are the Future , 2020, ArXiv.

[289]  Xinzi He,et al.  PTNet: A High-Resolution Infant MRI Synthesizer Based on Transformer , 2021, ArXiv.

[290]  Matthijs Douze,et al.  LeViT: a Vision Transformer in ConvNet’s Clothing for Faster Inference , 2021, 2021 IEEE/CVF International Conference on Computer Vision (ICCV).

[291]  Zhe Li,et al.  Evaluate the Malignancy of Pulmonary Nodules Using the 3-D Deep Leaky Noisy-OR Network , 2017, IEEE Transactions on Neural Networks and Learning Systems.

[292]  Loïc Le Folgoc,et al.  Attention U-Net: Learning Where to Look for the Pancreas , 2018, ArXiv.

[293]  Mark Sandler,et al.  MobileNetV2: Inverted Residuals and Linear Bottlenecks , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[294]  Andrew J. Reader,et al.  Deep Learning for PET Image Reconstruction , 2020, IEEE Transactions on Radiation and Plasma Medical Sciences.

[295]  Alexei A. Efros,et al.  Image-to-Image Translation with Conditional Adversarial Networks , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[296]  Andrew Y. Ng,et al.  MedAug: Contrastive learning leveraging patient metadata improves representations for chest X-ray interpretation , 2021, MLHC.

[297]  Sanjeev Arora,et al.  Evaluating Gradient Inversion Attacks and Defenses in Federated Learning , 2021, NeurIPS.

[298]  Jan Kautz,et al.  High-Resolution Image Synthesis and Semantic Manipulation with Conditional GANs , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[299]  T. Blumensath,et al.  Theory and Applications , 2011 .

[300]  Trevor Darrell,et al.  A ConvNet for the 2020s , 2022 .

[301]  Yan Song,et al.  Cross-modal Memory Networks for Radiology Report Generation , 2022, ACL.

[302]  Mhd Adel Momo,et al.  Encoding Retina Image to Words using Ensemble of Vision Transformers for Diabetic Retinopathy Grading , 2021, F1000Research.

[303]  Emine Ulku Saritas,et al.  TranSMS: Transformers for Super-Resolution Calibration in Magnetic Particle Imaging , 2021 .

[304]  J. Goulet,et al.  POCOVID-Net: Automatic Detection of COVID-19 From a New Lung Ultrasound Imaging Dataset (POCUS) , 2020, ArXiv.

[305]  D. Rueckert,et al.  Federated deep learning for detecting COVID-19 lung abnormalities in CT: a privacy-preserving multinational validation study , 2021, npj Digital Medicine.

[306]  Wassim Hamidouche,et al.  Reveal of Vision Transformers Robustness against Adversarial Attacks , 2021, ArXiv.

[307]  Juan Wachs,et al.  DAISI: Database for AI Surgical Instruction , 2020, ArXiv.

[308]  Daniel L Rubin,et al.  A curated mammography data set for use in computer-aided detection and diagnosis research , 2017, Scientific Data.

[309]  Qinghua Huang,et al.  Breast ultrasound image segmentation: a survey , 2017, International Journal of Computer Assisted Radiology and Surgery.

[310]  Yicheng Fang,et al.  Sensitivity of Chest CT for COVID-19: Comparison to RT-PCR , 2020, Radiology.

[311]  A. Bruckstein,et al.  K-SVD : An Algorithm for Designing of Overcomplete Dictionaries for Sparse Representation , 2005 .

[312]  et al.,et al.  Identifying the Best Machine Learning Algorithms for Brain Tumor Segmentation, Progression Assessment, and Overall Survival Prediction in the BRATS Challenge , 2018, ArXiv.

[313]  Luc Soler,et al.  U-Net Transformer: Self and Cross Attention for Medical Image Segmentation , 2021, MLMI@MICCAI.

[314]  Xiaoxiao Li,et al.  REFUGE Challenge: A Unified Framework for Evaluating Automated Methods for Glaucoma Assessment from Fundus Photographs , 2019, Medical Image Anal..

[315]  Hengyong Yu,et al.  TED-net: Convolution-free T2T Vision Transformer-based Encoder-decoder Dilation network for Low-dose CT Denoising , 2021, MLMI@MICCAI.

[316]  John G. Csernansky,et al.  Open Access Series of Imaging Studies: Longitudinal MRI Data in Nondemented and Demented Older Adults , 2010, Journal of Cognitive Neuroscience.

[317]  Axel Saalbach,et al.  Continual Learning for Domain Adaptation in Chest X-ray Classification , 2020, MIDL.

[318]  Munawar Hayat,et al.  A Volumetric Transformer for Accurate 3D Tumor Segmentation , 2021, ArXiv.

[319]  Q. Tao,et al.  Correlation of Chest CT and RT-PCR Testing in Coronavirus Disease 2019 (COVID-19) in China: A Report of 1014 Cases , 2020, Radiology.

[320]  Pascal Vincent,et al.  fastMRI: An Open Dataset and Benchmarks for Accelerated MRI , 2018, ArXiv.

[321]  Daniel L. Rubin,et al.  Deep Learning for Brain MRI Segmentation: State of the Art and Future Directions , 2017, Journal of Digital Imaging.

[322]  D. Shen,et al.  SMILE: Sparse-Attention based Multiple Instance Contrastive Learning for Glioma Sub-Type Classification Using Pathological Images , 2021, COMPAY@MICCAI.

[323]  Gavin Brown,et al.  Toward an Understanding of Adversarial Examples in Clinical Trials , 2018, ECML/PKDD.

[324]  Bo Dong,et al.  Polyp-PVT: Polyp Segmentation with Pyramid Vision Transformers , 2021, ArXiv.

[325]  Ian Goodfellow,et al.  Deep Learning with Differential Privacy , 2016, CCS.

[326]  Daniel Rueckert,et al.  End-to-end privacy preserving deep learning on multi-institutional medical imaging , 2021, Nature Machine Intelligence.

[327]  Jason Weston,et al.  Curriculum learning , 2009, ICML '09.

[328]  Shuicheng Yan,et al.  Tokens-to-Token ViT: Training Vision Transformers from Scratch on ImageNet , 2021, ArXiv.

[329]  Guangming Lu,et al.  TransAttUnet: Multi-level Attention-guided U-Net with Transformer for Medical Image Segmentation , 2021, ArXiv.

[330]  Enhua Wu,et al.  Transformer in Transformer , 2021, NeurIPS.

[331]  A. Sadate,et al.  Systematic review and meta-analysis on the impact of lung cancer screening by low-dose computed tomography. , 2020, European journal of cancer.

[332]  Hongbin Zha,et al.  Learning Dual Transformer Network for Diffeomorphic Registration , 2021, MICCAI.

[333]  Vasiliki Kougia,et al.  Diagnostic captioning: a survey , 2021, Knowledge and Information Systems.

[334]  Ming Chao,et al.  Improving Dermoscopic Image Segmentation With Enhanced Convolutional-Deconvolutional Networks , 2017, IEEE Journal of Biomedical and Health Informatics.

[335]  Boreom Lee,et al.  Gene Transformer: Transformers for the Gene Expression-based Classification of Cancer Subtypes , 2021, ArXiv.

[336]  Thomas Brox,et al.  U-Net: Convolutional Networks for Biomedical Image Segmentation , 2015, MICCAI.

[337]  Jiwen Lu,et al.  DynamicViT: Efficient Vision Transformers with Dynamic Token Sparsification , 2021, NeurIPS.

[338]  Alireza Tavakkoli,et al.  VTGAN: Semi-supervised Retinal Image Synthesis and Disease Prediction using Vision Transformers , 2021, 2021 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW).

[339]  Philipp Benz,et al.  Adversarial Robustness Comparison of Vision Transformer and MLP-Mixer to CNNs , 2021, BMVC.

[340]  Charles A. Bouman,et al.  Plug-and-Play Methods for Magnetic Resonance Imaging: Using Denoisers for Image Recovery , 2019, IEEE Signal Processing Magazine.

[341]  Michael Krauthammer,et al.  Progressive Transformer-Based Generation of Radiology Reports , 2021, EMNLP.

[342]  Shen Ge,et al.  AlignTransformer: Hierarchical Alignment of Visual Regions and Disease Tags for Medical Report Generation , 2022, MICCAI.

[343]  K. Doi,et al.  Development of a digital image database for chest radiographs with and without a lung nodule: receiver operating characteristic analysis of radiologists' detection of pulmonary nodules. , 2000, AJR. American journal of roentgenology.

[344]  Ronald M. Summers,et al.  Lymph node detection in T2 MRI with transformers , 2021, Medical Imaging.

[345]  Yan Wang,et al.  Identification of Melanoma From Hyperspectral Pathology Image Using 3D Convolutional Networks , 2020, IEEE Transactions on Medical Imaging.

[346]  Joon Beom Seo,et al.  Vision Transformer for COVID-19 CXR Diagnosis using Chest X-ray Feature Corpus , 2021, ArXiv.

[347]  Mei Zhou,et al.  A Multidimensional Choledoch Database and Benchmarks for Cholangiocarcinoma Diagnosis , 2019, IEEE Access.

[348]  Xiaohui Xie,et al.  A deep learning-based auto-segmentation system for organs-at-risk on whole-body computed tomography images for radiation therapy. , 2021, Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology.

[349]  Huazhu Fu,et al.  Task Transformer Network for Joint MRI Reconstruction and Super-Resolution , 2021, MICCAI.

[350]  Unais Sait,et al.  Curated Dataset for COVID-19 Posterior-Anterior Chest Radiography Images (X-Rays). , 2020 .

[351]  Geoffrey E. Hinton,et al.  Big Self-Supervised Models are Strong Semi-Supervised Learners , 2020, NeurIPS.

[352]  Kjersti Engan,et al.  Method of optimal directions for frame design , 1999, 1999 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings. ICASSP99 (Cat. No.99CH36258).

[353]  Yifan Yu,et al.  CheXpert: A Large Chest Radiograph Dataset with Uncertainty Labels and Expert Comparison , 2019, AAAI.

[354]  Amitojdeep Singh,et al.  Explainable Deep Learning Models in Medical Image Analysis , 2020, J. Imaging.

[355]  Dong Ni,et al.  Deep Learning in Medical Ultrasound Analysis: A Review , 2019, Engineering.

[356]  Lingyun Wu,et al.  Multi-Compound Transformer for Accurate Biomedical Image Segmentation , 2021, MICCAI.

[357]  Alon Lavie,et al.  Meteor 1.3: Automatic Metric for Reliable Optimization and Evaluation of Machine Translation Systems , 2011, WMT@EMNLP.

[358]  Surabhi Bhargava,et al.  A Dataset and a Technique for Generalized Nuclear Segmentation for Computational Pathology , 2017, IEEE Transactions on Medical Imaging.

[359]  Xinhua Wei,et al.  Can Chest CT Features Distinguish Patients With Negative From Those With Positive Initial RT-PCR Results for Coronavirus Disease (COVID-19)? , 2020, AJR. American journal of roentgenology.

[360]  Reyer Zwiggelaar,et al.  Deep learning in mammography and breast histology, an overview and future trends , 2018, Medical Image Anal..

[361]  Aymeric Histace,et al.  Toward embedded detection of polyps in WCE images for early diagnosis of colorectal cancer , 2014, International Journal of Computer Assisted Radiology and Surgery.

[362]  Klaus H. Maier-Hein,et al.  nnU-Net: Self-adapting Framework for U-Net-Based Medical Image Segmentation , 2018, Bildverarbeitung für die Medizin.

[363]  Markus Neuhäuser,et al.  Wilcoxon Signed Rank Test , 2006 .

[364]  Radu Tudor Ionescu,et al.  CyTran: Cycle-Consistent Transformers for Non-Contrast to Contrast CT Translation , 2021, ArXiv.

[365]  Holger Roth,et al.  Self-Supervised Pre-Training of Swin Transformers for 3D Medical Image Analysis , 2021, ArXiv.

[366]  Brian B. Avants,et al.  The Multimodal Brain Tumor Image Segmentation Benchmark (BRATS) , 2015, IEEE Transactions on Medical Imaging.

[367]  Dr. Kailash Shaw,et al.  Skin Lesion Analysis towards Melanoma Detection , 2018 .

[368]  David Zhang,et al.  Patch Group Based Nonlocal Self-Similarity Prior Learning for Image Denoising , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[369]  Chunhua Shen,et al.  CoTr: Efficiently Bridging CNN and Transformer for 3D Medical Image Segmentation , 2021, MICCAI.

[370]  Daniel Rueckert,et al.  The developing human connectome project: A minimal processing pipeline for neonatal cortical surface reconstruction , 2017, NeuroImage.

[371]  Andrea Vedaldi,et al.  Deep Image Prior , 2017, International Journal of Computer Vision.

[372]  A. Yuille,et al.  Axial-DeepLab: Stand-Alone Axial-Attention for Panoptic Segmentation , 2020, ECCV.

[373]  Nal Kalchbrenner,et al.  Colorization Transformer , 2021, ICLR.

[374]  Antonio Pertusa,et al.  PadChest: A large chest x-ray image dataset with multi-label annotated reports , 2019, Medical Image Anal..

[375]  Xiangjian He,et al.  Deep Learning Techniques for Medical Image Segmentation: Achievements and Challenges , 2019, Journal of Digital Imaging.

[376]  Nick G. Kingsbury,et al.  Hidden Markov tree modeling of complex wavelet transforms , 2000, 2000 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.00CH37100).

[377]  Lawrence D. Jackel,et al.  Backpropagation Applied to Handwritten Zip Code Recognition , 1989, Neural Computation.

[378]  Walid Al-Dhabyani,et al.  Dataset of breast ultrasound images , 2019, Data in brief.

[379]  Jinglu Zhang,et al.  Surgical Instruction Generation with Transformers , 2021, MICCAI.

[380]  Tolga Çukur,et al.  ResViT: Residual vision transformers for multi-modal medical image synthesis , 2021, ArXiv.

[381]  Yixuan Li,et al.  Generalized Out-of-Distribution Detection: A Survey , 2021, ArXiv.

[382]  Mohammad Yaqub,et al.  Automatic Segmentation of Head and Neck Tumor: How Powerful Transformers Are? , 2022, ArXiv.

[383]  Noel C. F. Codella,et al.  Skin lesion analysis toward melanoma detection: A challenge at the 2017 International symposium on biomedical imaging (ISBI), hosted by the international skin imaging collaboration (ISIC) , 2016, 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018).

[384]  Sébastien Ourselin,et al.  TorchIO: A Python library for efficient loading, preprocessing, augmentation and patch-based sampling of medical images in deep learning , 2020, Comput. Methods Programs Biomed..

[385]  Qianni Zhang,et al.  GT U-Net: A U-Net Like Group Transformer Network for Tooth Root Segmentation , 2021, MLMI@MICCAI.

[386]  Jelmer M. Wolterink,et al.  Deep MR to CT Synthesis Using Unpaired Data , 2017, SASHIMI@MICCAI.

[387]  Ben Glocker,et al.  Attention Gated Networks: Learning to Leverage Salient Regions in Medical Images , 2018, Medical Image Anal..

[388]  Andrew L. Beam,et al.  Adversarial attacks on medical machine learning , 2019, Science.

[389]  Dinggang Shen,et al.  3D Transformer-GAN for High-Quality PET Reconstruction , 2021, MICCAI.

[390]  Cordelia Schmid,et al.  Segmenter: Transformer for Semantic Segmentation , 2021, 2021 IEEE/CVF International Conference on Computer Vision (ICCV).

[391]  Nima Tajbakhsh,et al.  Automated Polyp Detection in Colonoscopy Videos Using Shape and Context Information , 2016, IEEE Transactions on Medical Imaging.

[392]  Christos Davatzikos,et al.  The RSNA-ASNR-MICCAI BraTS 2021 Benchmark on Brain Tumor Segmentation and Radiogenomic Classification , 2021, ArXiv.

[393]  F. El-Samie,et al.  Extensive COVID-19 X-Ray and CT Chest Images Dataset , 2020 .

[394]  Paul Babyn,et al.  Generative Adversarial Network in Medical Imaging: A Review , 2018, Medical Image Anal..

[395]  Jorge A Cuadros,et al.  EyePACS: An Adaptable Telemedicine System for Diabetic Retinopathy Screening , 2009, Journal of diabetes science and technology.

[396]  Huiye Liu,et al.  TransFuse: Fusing Transformers and CNNs for Medical Image Segmentation , 2021, MICCAI.

[397]  John G. Csernansky,et al.  Open Access Series of Imaging Studies (OASIS): Cross-sectional MRI Data in Young, Middle Aged, Nondemented, and Demented Older Adults , 2007, Journal of Cognitive Neuroscience.

[398]  H. Brody Medical imaging , 2013, Nature.

[399]  Lior Wolf,et al.  Pre-training and Fine-tuning Transformers for fMRI Prediction Tasks , 2021, ArXiv.

[400]  Li Fei-Fei,et al.  ImageNet: A large-scale hierarchical image database , 2009, CVPR.

[401]  Thomas Pock,et al.  Inverse GANs for accelerated MRI reconstruction , 2019, Optical Engineering + Applications.

[402]  Guan-Lin Chen,et al.  Visual Transformer with Statistical Test for COVID-19 Classification , 2021, ArXiv.

[403]  Dong Ni,et al.  A Deep Attentive Convolutional Neural Network for Automatic Cortical Plate Segmentation in Fetal MRI , 2020, IEEE Transactions on Medical Imaging.

[404]  Pedro M. Ferreira,et al.  PH2 - A dermoscopic image database for research and benchmarking , 2013, 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC).

[405]  Alexei A. Efros,et al.  Swapping Autoencoder for Deep Image Manipulation , 2020, NeurIPS.

[406]  Jian Sun,et al.  Deep Residual Learning for Image Recognition , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[407]  Yidong Li,et al.  EDCNN: Edge enhancement-based Densely Connected Network with Compound Loss for Low-Dose CT Denoising , 2020, 2020 15th IEEE International Conference on Signal Processing (ICSP).

[408]  Prospero C. Naval,et al.  COViT-GAN: Vision Transformer forCOVID-19 Detection in CT Scan Imageswith Self-Attention GAN forDataAugmentation , 2021, International Conference on Artificial Neural Networks.

[409]  Marten van Dijk,et al.  On the Robustness of Vision Transformers to Adversarial Examples , 2021, 2021 IEEE/CVF International Conference on Computer Vision (ICCV).