Practical system for tracking multiple maneuvering targets

The tracking of multiple maneuvering targets in a dense clut- ter environment is investigated. An effective parallel processing algo- rithm based on state fusion and fast joint probabilistic data association (FJPDA) is proposed. State fusion and feedback of all state information are used to fit different movements of targets. The FJPDA, combining cluster matrix decomposition with a fast data association algorithm, is used for tracking multiple targets. The advantages of this algorithm are not only keeping the accurate estimation and fast response for target maneuvering, but also reducing the computational burden of data asso- ciation from N !t oN/4*(4!). Three examples are simulated to prove the validity and reliability of the proposed new algorithm. © 2003 Society of

[1]  R. Singer Estimating Optimal Tracking Filter Performance for Manned Maneuvering Targets , 1970, IEEE Transactions on Aerospace and Electronic Systems.

[2]  J. A. Roecker,et al.  Suboptimal joint probabilistic data association , 1993 .

[3]  Xu Hong,et al.  Information fusion and tracking of maneuvering targets with artificial neural network , 1994, Proceedings of 1994 IEEE International Conference on Neural Networks (ICNN'94).

[4]  C. Morefield Application of 0-1 integer programming to multitarget tracking problems , 1977 .

[5]  Hongren Zhou Tracking of Maneuvering Targets. , 1984 .

[6]  Michael O. Kolawole,et al.  Estimation and tracking , 2002 .

[7]  John Stein,et al.  An optimal tracking filter for processing sensor data of imprecisely determined origin in surveillance systems , 1971, CDC 1971.

[8]  Li-Xin Wang,et al.  Adaptive fuzzy systems and control - design and stability analysis , 1994 .

[9]  N. K. Bose,et al.  A comprehensive analysis of 'Neural solution to the multitarget tracking data association problem' by D. Sengupta and R.A. Iltis (1989) , 1993 .

[10]  K. S. P. Kumar,et al.  A 'current' statistical model and adaptive algorithm for estimating maneuvering targets , 1984 .

[11]  D. Alspach A gaussian sum approach to the multi-target identification-tracking problem , 1975, Autom..

[12]  Kim B. Housewright,et al.  Derivation and evaluation of improved tracking filter for use in dense multitarget environments , 1974, IEEE Trans. Inf. Theory.

[13]  Donald Reid An algorithm for tracking multiple targets , 1978 .

[14]  Ronald A. Iltis,et al.  Neural solution to the multitarget tracking data association problem , 1989 .

[15]  N. K. Bose,et al.  Multitarget tracking in clutter: fast algorithms for data association , 1993 .

[16]  Y. Bar-Shalom,et al.  The interacting multiple model algorithm for systems with Markovian switching coefficients , 1988 .

[17]  Lang Hong,et al.  An interacting multi-pattern probabilistic data association (IMP-PDA) algorithm for target tracking , 2001, IEEE Trans. Autom. Control..

[18]  Peter Willett,et al.  Integration of Bayes detection with target tracking , 2001, IEEE Trans. Signal Process..

[19]  Y. Bar-Shalom,et al.  Variable Dimension Filter for Maneuvering Target Tracking , 1982, IEEE Transactions on Aerospace and Electronic Systems.

[20]  Krishna R. Pattipati,et al.  Fast data association using multidimensional assignment with clustering , 2001 .

[21]  Yaakov Bar-Shalom,et al.  Estimation and Tracking: Principles, Techniques, and Software , 1993 .

[22]  P. Bogler Tracking a Maneuvering Target Using Input Estimation , 1987, IEEE Transactions on Aerospace and Electronic Systems.

[23]  Robert J. Fitzgerald,et al.  Development of Practical PDA Logic for Multitarget Tracking by Microprocessor , 1986, 1986 American Control Conference.

[24]  Y. Bar-Shalom Tracking and data association , 1988 .

[25]  Y. Bar-Shalom,et al.  Tracking in a cluttered environment with probabilistic data association , 1975, Autom..