Decentralised static output feedback stabilisation and synchronisation of networks

In this paper global stabilisation of a complex network is attained by applying local decentralised output feedback control to a minimum number of nodes of the network. The stabilisation of the network is treated as a rank constrained problem. Strict positive realness conditions on the node level dynamics allow nonlinearities/uncertainties which satisfy the sector conditions to be considered. A network of Chua oscillators with 75 nodes is considered to demonstrate the efficacy of the approach.

[1]  Zhang Yingwei Decentralized Output Feedback Robust Stabilization for a Class of Nonlinear Interconnected Systems with Similarity , 2001 .

[2]  V. Gazi Formation control of a multi-agent system using non-linear servomechanism , 2005 .

[3]  Christopher Edwards,et al.  Decentralised robust sliding mode control for a class of nonlinear interconnected systems by static output feedback , 2004, Autom..

[4]  Lubomír Bakule,et al.  Decentralized control: An overview , 2008, Annu. Rev. Control..

[5]  Mark E. J. Newman,et al.  Structure and Dynamics of Networks , 2009 .

[6]  Ji Xiang,et al.  On the V-stability of complex dynamical networks , 2007, Autom..

[7]  Kevin M. Passino,et al.  of nonlinear systems , 2006 .

[8]  Kevin M. Passino,et al.  Adaptive control of a class of decentralized nonlinear systems , 1995, Proceedings of 1995 34th IEEE Conference on Decision and Control.

[9]  G. Gu Stabilizability conditions of multivariable uncertain systems via output feedback control , 1990 .

[10]  Junan Lu,et al.  Adaptive synchronization of an uncertain complex dynamical network , 2006, IEEE Transactions on Automatic Control.

[11]  M. Areak,et al.  Passivity as a design tool for group coordination , 2006, 2006 American Control Conference.

[12]  Soon-Jo Chung,et al.  Application of Synchronization to Formation Flying Spacecraft: Lagrangian Approach , 2008, 0803.0170.

[13]  Guanrong Chen,et al.  On pinning control of scale-free networks , 2005, Proceedings. 2005 International Conference Physics and Control, 2005..

[14]  Manfredi Maggiore,et al.  State Agreement for Continuous-Time Coupled Nonlinear Systems , 2007, SIAM J. Control. Optim..

[15]  Duncan J. Watts,et al.  Collective dynamics of ‘small-world’ networks , 1998, Nature.

[16]  Duncan J. Watts,et al.  The Structure and Dynamics of Networks: (Princeton Studies in Complexity) , 2006 .

[17]  Guanrong Chen,et al.  Pinning control of scale-free dynamical networks , 2002 .

[18]  Richard M. Murray,et al.  INFORMATION FLOW AND COOPERATIVE CONTROL OF VEHICLE FORMATIONS , 2002 .

[19]  Gordon F. Royle,et al.  Algebraic Graph Theory , 2001, Graduate texts in mathematics.

[20]  Stephen P. Boyd,et al.  Linear Matrix Inequalities in Systems and Control Theory , 1994 .

[21]  L. Ghaoui,et al.  History of linear matrix inequalities in control theory , 1994, Proceedings of 1994 American Control Conference - ACC '94.

[22]  Johan Efberg,et al.  YALMIP : A toolbox for modeling and optimization in MATLAB , 2004 .

[23]  Guanrong Chen,et al.  Complex networks: small-world, scale-free and beyond , 2003 .

[24]  Lihua Xie,et al.  Reduced-order control for a class of nonlinear similar interconnected systems with mismatched uncertainty , 2003, Autom..

[25]  B. R. Barmish,et al.  The constrained Lyapunov problem and its application to robust output feedback stabilization , 1986 .

[26]  D. Watts,et al.  Small Worlds: The Dynamics of Networks between Order and Randomness , 2001 .

[27]  J. Suykens,et al.  Robust synthesis for master-slave synchronization of Lur'e systems , 1999 .

[28]  Christopher Edwards,et al.  On Output Tracking Using Dynamic Output Feedback Discrete-Time Sliding Mode Controllers , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[29]  Johan Löfberg,et al.  YALMIP : a toolbox for modeling and optimization in MATLAB , 2004 .

[30]  John B. Moore,et al.  A Newton-like method for solving rank constrained linear matrix inequalities , 2006, 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601).

[31]  E. Yaz Linear Matrix Inequalities In System And Control Theory , 1998, Proceedings of the IEEE.

[32]  Luc Moreau,et al.  Stability of multiagent systems with time-dependent communication links , 2005, IEEE Transactions on Automatic Control.

[33]  Kevin M. Passino,et al.  Adaptive control of a class of decentralized nonlinear systems , 1996 .

[34]  Randal W. Beard,et al.  Distributed Consensus in Multi-vehicle Cooperative Control - Theory and Applications , 2007, Communications and Control Engineering.

[35]  S. Spurgeon,et al.  On the Solvability of the Constrained Lyapunov Problem , 2006, IEEE Transactions on Automatic Control.