LIKELIHOOD-FREE COSMOLOGICAL INFERENCE WITH TYPE Ia SUPERNOVAE: APPROXIMATE BAYESIAN COMPUTATION FOR A COMPLETE TREATMENT OF UNCERTAINTY

Cosmological inference becomes increasingly difficult when complex data-generating processes cannot be modeled by simple probability distributions. With the ever-increasing size of data sets in cosmology, there is an increasing burden placed on adequate modeling; systematic errors in the model will dominate where previously these were swamped by statistical errors. For example, Gaussian distributions are an insufficient representation for errors in quantities like photometric redshifts. Likewise, it can be difficult to quantify analytically the distribution of errors that are introduced in complex fitting codes. Without a simple form for these distributions, it becomes difficult to accurately construct a likelihood function for the data as a function of parameters of interest. Approximate Bayesian computation (ABC) provides a means of probing the posterior distribution when direct calculation of a sufficiently accurate likelihood is intractable. ABC allows one to bypass direct calculation of the likelihood but instead relies upon the ability to simulate the forward process that generated the data. These simulations can naturally incorporate priors placed on nuisance parameters, and hence these can be marginalized in a natural way. We present and discuss ABC methods in the context of supernova cosmology using data from the SDSS-II Supernova Survey. Assuming a flat cosmology and constant dark energy equation of state, we demonstrate that ABC can recover an accurate posterior distribution. Finally, we show that ABC can still produce an accurate posterior distribution when we contaminate the sample with Type IIP supernovae.

[1]  W. Cleveland Robust Locally Weighted Regression and Smoothing Scatterplots , 1979 .

[2]  J. Mathis,et al.  The relationship between infrared, optical, and ultraviolet extinction , 1989 .

[3]  Bradley P. Carlin,et al.  Markov Chain Monte Carlo conver-gence diagnostics: a comparative review , 1996 .

[4]  W. Li,et al.  Estimating the age of the common ancestor of a sample of DNA sequences. , 1997, Molecular biology and evolution.

[5]  P. Donnelly,et al.  Inferring coalescence times from DNA sequence data. , 1997, Genetics.

[6]  D. Schlegel,et al.  Maps of Dust IR Emission for Use in Estimation of Reddening and CMBR Foregrounds , 1997, astro-ph/9710327.

[7]  M. Phillips,et al.  Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant , 1998, astro-ph/9805201.

[8]  R. Ellis,et al.  Measurements of $\Omega$ and $\Lambda$ from 42 high redshift supernovae , 1998, astro-ph/9812133.

[9]  A. von Haeseler,et al.  Inference of population history using a likelihood approach. , 1998, Genetics.

[10]  D. Schlegel,et al.  Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds , 1998 .

[11]  M. Feldman,et al.  Population growth of human Y chromosomes: a study of Y chromosome microsatellites. , 1999, Molecular biology and evolution.

[12]  D. Balding,et al.  Approximate Bayesian computation in population genetics. , 2002, Genetics.

[13]  P. Moral,et al.  Sequential Monte Carlo samplers , 2002, cond-mat/0212648.

[14]  Mamoru Doi,et al.  New Constraints on ΩM, ΩΛ, and w from an Independent Set of 11 High-Redshift Supernovae Observed with the Hubble Space Telescope , 2003 .

[15]  Paul Marjoram,et al.  Markov chain Monte Carlo without likelihoods , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[16]  Stefano Casertano,et al.  Type Ia Supernova Discoveries at z > 1 from the Hubble Space Telescope: Evidence for Past Deceleration and Constraints on Dark Energy Evolution , 2004, astro-ph/0402512.

[17]  R. Nichol,et al.  Detection of the Baryon Acoustic Peak in the Large-Scale Correlation Function of SDSS Luminous Red Galaxies , 2005, astro-ph/0501171.

[18]  L. Wasserman All of Nonparametric Statistics , 2005 .

[19]  Adam G. Riess,et al.  Improved Distances to Type Ia Supernovae with Multicolor Light-Curve Shapes: MLCS2k2 , 2006 .

[20]  N. B. Suntzeff,et al.  The ESSENCE Supernova Survey: Survey Optimization, Observations, and Supernova Photometry , 2007, astro-ph/0701043.

[21]  P. E. Nugent,et al.  K-corrections and spectral templates of Type Ia supernovae , 2007 .

[22]  N. B. Suntzeff,et al.  Observational Constraints on the Nature of Dark Energy: First Cosmological Results from the ESSENCE Supernova Survey , 2007, astro-ph/0701041.

[23]  Mark M. Tanaka,et al.  Sequential Monte Carlo without likelihoods , 2007, Proceedings of the National Academy of Sciences.

[24]  J. Prieto,et al.  THE SLOAN DIGITAL SKY SURVEY-II SUPERNOVA SURVEY: SEARCH ALGORITHM AND FOLLOW-UP OBSERVATIONS , 2007, 0708.2750.

[25]  W. M. Wood-Vasey,et al.  Improved Cosmological Constraints from New, Old, and Combined Supernova Data Sets , 2008, 0804.4142.

[26]  Mamoru Doi,et al.  THE SLOAN DIGITAL SKY SURVEY-II: PHOTOMETRY AND SUPERNOVA IA LIGHT CURVES FROM THE 2005 DATA , 2008, 0908.4277.

[27]  M. Smith,et al.  A Measurement of the Rate of Type Ia Supernovae at Redshift z ≈ 0.1 from the First Season of the SDSS-II Supernova Survey , 2008, 0801.3297.

[28]  Edward J. Wollack,et al.  FIVE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE * OBSERVATIONS: COSMOLOGICAL INTERPRETATION , 2008, 0803.0547.

[29]  J. Kaplan,et al.  THE SLOAN DIGITAL SKY SURVEY-II SUPERNOVA SURVEY: TECHNICAL SUMMARY , 2007, 0708.2749.

[30]  C. Robert,et al.  Adaptive approximate Bayesian computation , 2008, 0805.2256.

[31]  Ernest E. Croner,et al.  The Palomar Transient Factory: System Overview, Performance, and First Results , 2009, 0906.5350.

[32]  J. Vanderplas,et al.  FIRST-YEAR SLOAN DIGITAL SKY SURVEY-II SUPERNOVA RESULTS: HUBBLE DIAGRAM AND COSMOLOGICAL PARAMETERS , 2009, 0908.4274.

[33]  Nicholas B. Suntzeff,et al.  THE CARNEGIE SUPERNOVA PROJECT: FIRST PHOTOMETRY DATA RELEASE OF LOW-REDSHIFT TYPE Ia SUPERNOVAE , 2009, 0910.3330.

[34]  Armin Rest,et al.  IMPROVED DARK ENERGY CONSTRAINTS FROM ∼100 NEW CfA SUPERNOVA TYPE Ia LIGHT CURVES , 2009, 0901.4804.

[35]  Jake Vanderplas,et al.  SNANA: A Public Software Package for Supernova Analysis , 2009, 0908.4280.

[36]  J. Vanderplas,et al.  First-year Sloan Digital Sky Survey-II supernova results: consistency and constraints with other intermediate-redshift data sets , 2009, 0910.2193.

[37]  T. Pritchard,et al.  RESULTS OF THE LICK OBSERVATORY SUPERNOVA SEARCH FOLLOW-UP PHOTOMETRY PROGRAM: BVRI LIGHT CURVES OF 165 TYPE Ia SUPERNOVAE , 2010 .

[38]  Wendy L. Freedman,et al.  THE CARNEGIE SUPERNOVA PROJECT: SECOND PHOTOMETRY DATA RELEASE OF LOW-REDSHIFT TYPE Ia SUPERNOVAE , 2010, 1108.3108.

[39]  M. S. Burns,et al.  SPECTRA AND HUBBLE SPACE TELESCOPE LIGHT CURVES OF SIX TYPE Ia SUPERNOVAE AT 0.511 < z < 1.12 AND THE UNION2 COMPILATION , 2010, 1004.1711.

[40]  Spectra and Light Curves of Six Type Ia Supernovae at 0.511 < z < 1.12 and the Union2 Compilation , 2010, 1004.1711.

[41]  Olivier François,et al.  Non-linear regression models for Approximate Bayesian Computation , 2008, Stat. Comput..

[42]  Gautham Narayan,et al.  TYPE Ia SUPERNOVA LIGHT CURVE INFERENCE: HIERARCHICAL MODELS IN THE OPTICAL AND NEAR-INFRARED , 2010, 1011.5910.

[43]  Paul Fearnhead,et al.  Constructing summary statistics for approximate Bayesian computation: semi‐automatic approximate Bayesian computation , 2012 .

[44]  J. Møller Discussion on the paper by Feranhead and Prangle , 2012 .

[45]  A. N. Pettitt,et al.  Approximate Bayesian Computation for astronomical model analysis: a case study in galaxy demographics and morphological transformation at high redshift , 2012, 1202.1426.

[46]  W. Wood-Vasey,et al.  CfA4: LIGHT CURVES FOR 94 TYPE Ia SUPERNOVAE , 2012, 1205.4493.

[47]  R. Nichol,et al.  COSMOLOGY WITH PHOTOMETRICALLY CLASSIFIED TYPE Ia SUPERNOVAE FROM THE SDSS-II SUPERNOVA SURVEY , 2012, 1211.4480.