Synthesis and spectroscopy of chemically modified spheroidenes

The syntheses and spectroscopic properties of the all-E isomers of 11′,12′-dihydrospheroidene (2), 3,4,11′,12′-tetrahydrospheroidene (3), 3,4-dihydrospheroidene (4), 3,4,5,6-tetrahydrospheroidene (5), 3,4,7,8-tetrahydrospheroidene (6) and 15,15′-didehydrospheroidene (7) are described. Spheroidenes 2-6 have the same overall shape as native spheroidene (1), which is the carotenoid bound in the photosynthetic reaction centre of Rhodobacter sphaeroides 2.4.1, but they have instead polyene chromophores of nine (4), eight (2, 5) or seven (3, 6) conjugated double bonds. In 7, the central double bond is substituted by a triple bond. The observed λmax values of 2-6 are generally in good agreement with those calculated via the Fieser-Kuhn rules. In the mass spectra of 2-6, fragments due to bis-allylic fragmentation occur, whereas 1 and 7 do not show this type of fragmentation. A detailed analysis of the 1H- and 13C-NMR spectra of 1-7 has been achieved by mutual comparison.

[1]  A. Lefeber,et al.  Synthesis and spectroscopy of (14′‐13C)‐ and (15′‐13C)spheroidene , 2010 .

[2]  J. Luijten,et al.  Investigations on organo‐tin compounds. VIII. preparation of some organo‐tin hydrides , 2007 .

[3]  H. Frank,et al.  13C Magic angle spinning NMR evidence for a 15,15’-Z configuration of the spheroidene chromophore in the Rhodobacter sphaeroides reaction center; synthesis of 13C- and 2H-labelled spheroidenes , 1991 .

[4]  Davidr . Evans,et al.  Conjugate reduction of .alpha.,.beta.-unsaturated carbonyl compounds by catecholborane , 1990 .

[5]  T. G. Truscott,et al.  New trends in photobiology , 1990 .

[6]  G. Feher,et al.  Structure and function of bacterial photosynthetic reaction centres , 1989, Nature.

[7]  G. Feher,et al.  Structure of the reaction center from Rhodobacter sphaeroides R-26 and 2.4.1: protein-cofactor (bacteriochlorophyll, bacteriopheophytin, and carotenoid) interactions. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[8]  R. Mathies,et al.  Structure and function of rhodopsins from solid state NMR and resonance Raman spectroscopy of isotopic retinal derivatives. , 1988, Trends in biochemical sciences.

[9]  H. Frank,et al.  How carotenoids function in photosynthetic bacteria. , 1987, Biochimica et biophysica acta.

[10]  C. Heeremans,et al.  Mechanism for the opsin shift of retinal's absorption in bacteriorhodopsin , 1986 .

[11]  H. Pfander,et al.  Synthese von Diterpenen als m?gliche biogenetische Vorl?ufer des C20-Carotinoides Crocetin , 1983 .

[12]  B. Honig,et al.  An external point-charge model for bacteriorhodopsin to account for its purple color , 1980 .

[13]  M. Rest,et al.  Structure and function of carotenoids in the photoreaction center from Rhodospirillum rubrum , 1977 .

[14]  W. W. Parson,et al.  The type, amount, location, and energy transfer properties of the carotenoid in reaction centers from Rhodopseudomonas sphaeroides. , 1976, Biochimica et biophysica acta.

[15]  G. Englert A 13C-NMR. Study of cis-trans isomeric vitamins A, carotenoids and related compounds. , 1975, Helvetica chimica acta.

[16]  M. Zink,et al.  Selektive Reduktion von β‐Jonon und Dehydro‐β‐jonon mit Triphenylzinnhydrid , 1973 .

[17]  E. Corey,et al.  A synthetic method for formyl→ethynyl conversion (RCHO→RCCH or RCCR′) , 1972 .

[18]  H. Kuivila Reduction of Organic Compounds by Organotin Hydrides , 1970 .

[19]  G. Francis,et al.  Mass spectrometric studies of carotenoids. 2. A survey of fragmentation reactions. , 1969, Acta chemica Scandinavica.

[20]  B. Weedon,et al.  360. Carotenoids and related compounds. Part XI. Syntheses of δ-carotene and ε-carotene , 1965 .

[21]  J. D. Surmatis,et al.  Total Synthesis of Spirilloxanthin, Dehydrolycopene, and 1,1'-Dihydroxy-1,2,1',2'-tetrahydrolycopene1 , 1963 .

[22]  M. Ohta,et al.  4-Chloro-3-methylcrotonic Acid Derivatives and Phosphonates , 1962 .